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1. INTRODUCTION
This reports the results of an AFRPL-sponsored effort spanning the
period 1 June 1984 - 31 August 1985 which developed computer programs

for optimization of orbital maneuvering and applied them to the study of

attack and evasion sequences.
Rocket burns are modelled impulsively, the fuel consumed in such a
| maneuver being related directly to the magnitude of the velocity-vector

increment, AV, in the usual way. Coasting arcs are conics,

corresponding to an inverse-square-law gravity model, in one version of I{;¥;-

the computer program developed, this choice facilitating future develop-

ment of a general-purpose program. In another version, near-circular-

orbit coast modelling is adopted, which offers simplifications

attractive for evasion-and-return sequences and their real-time cal-

G

;: culation (Refs. 1, 2 and 3). A variety of operational constraints on ;%%E;

: maneuver sequences is provided including minimum-radius constraints, ?@?Eﬁ'

! which turn out to be important in the generation of optimal co-orbital _!!!!T

. attack-maneuver sequences. Performance indices employed are minimum ;ES&;

fuel, with or without time constraints, and minimum time with limited t;ﬁ;;

b fuel.
o

The optimization is cast in the form of a nonlinear-programming é}h§

problem: a n-vector, x, is to be found so as to minimize a performance q?%né

index f(x) subject to some equality constraints of the form gi(x) = 0,
i =1, ---, m, and some inequality constraints of the form gm+j(x) >0,
j=1, ---, p. Here the x components include the AV components of each

burn and the times (or positions) at which they occur. The g functions

s W W BTaE——

describe constraints such as the intercept condition (position vectors
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equal at final time) and the rendezvous condition (velocity vectors
equal at final time) as.well as various other constraints. The non-
linear-programming algorithm presently employed is basically that of
Refs. 4 and 5, Updating includes the use of the BFGS variable metric

in place of the older DFP and the addition of advanced active-constraint
logic (Ref. 6) in connection with projection treatment of constraints.
The algorithm is described in Appendix A.

The computer software developed (some of it adapted from earlier
efforts) is herein applied to the study of co-orbital attack-maneuver
sequences against a nonmaneuvering target. Initially minimum-aV
sequences are explored with intercept time open and a bare minimum of
operational constraints. As will be seen, it turns out to be important
to include minimum-radius constraints for realistic results; this
feature has rarely previously been included in orbit-transfer studies.
(The state of the art in the context of analytical methods is described
in Ref, 7 while Ref. 8 is representative of current computational
approaches.) The effects of various operational constraints are
explored and qualitative comparisons drawn with observed Soviet ASAT-
system maneuver sequence (Ref. 9).

Optimal in-plane evasive maneuvering is investigated analytically
and computationally herein with the use of the Clohessy-Wiltshire
near-circular-orbit model (Refs. 1, 2 and 3) which is adequate for
Tow altitude maneuvering studies and attractive for its analytical
simplicity. .he evasive maneuver optimization of Ref. 3 is extended to

include return-to-orbit and return-to-position-in-orbit constraints.
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in a closing section.
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2. IMPULSE-COAST MANEUVER-SEQUENCE MODELLING

This section details the mathematical models used for the
intercept-maneuver sequences and the evasive-maneuver sequences. The
former uses the complete inverse-square-law gravitational model while
the latter uses a linearized version of the inverse-square-law sug-

gested by Clohessy and Wiltshire for near-circular orbits (Ref. 1).

Intercept-Maneuver Modelling

The intercept-maneuver sequences studied subsequently model the
motion of the vehicle as a sequence of unpowered coasting arcs with
velocity impulses of their junctions. The coasting arcs are
Keplerian orbits (conics) with the exception of the first arc which
consists of circular motion due to a fixed point on the surface of a
rotating earth. The computer code developed for the intercept portion
of the mission models the coasting arcs as either an earth-bound arc
or a Keplerian arc. The structure of the code, however, allows for
other models to be incorporated such as, for example, oblateness

corrections for the Kepler orbits.

Keplerian Orbits

Under the assumption of a spherical earth with no atmosphere, .

the solution for the coasting arcs of the vehicle becomes simply the
solution to the classical two-body problem. The governing equation

of motion is given by [22]

L
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F

where r = the position vector from the center of the earth to the

vehicle and = GMe’ the mass constant associated with the earth. Un-
fortunately, there is no closed-form solution to eq. (2.1) which yields
r(t). However, by transforming both the independent and dependent
variables a solution of a sort is possible. Typically the independent
variable is transformed from time to an angle variable. The nature of
the_problem at hand leads one to consider the central angle or change

in true anomaly as a candidate for the independent variable, The true
anomaly itself is not a particularly good candidate because for

circular orbits it is undefined. However, we resort to the true anomaly

to recover an expression for time.

Trajectory Equations
By taking the cross product of r with eq. (2.1) we can extract a

constant of the motion

roxor

h = Const (2.2)

where h = angular momentum of the system. Equation (2.2) indicates that
the unforced motion of the satellite remains in a plane determined by

r and r which passes through the center of the earth. If we view the
orbit in that plane, the position vector moves from one position

through an angle to another position. This angle is designated as the

change in the true anomaly, that is

n=v-v (2.3)

AU B i A A i - e AP




where n = change in true anomaly

true anomaly of epoch

<
]

current true anomaly

<
n

As indicated previously, since the true anomaly is measured from the

position in the orbit closest to the earth's center (perigee) it is

not well-defined for circular orbits. As a result, it is useful to
i. use the change in true anomaly as the independent variable. The

N angular momentum constant can then be used to eliminate time from the

problem in favor of the change in true anomaly. The magnitude of h is

easily determined using plane polar coordinates to be

Al =h=r?g0 (2.4)

Equation (2.4) can be used to eliminate time by noting that

d(-) _ h d(-
((it Y ((ln) (2.5)

-

Substituting eq. (2.5) into the radial component of eq. (2.1) and in

addition making the dependent variable transformation

u=1 (2.6)

leads directly to the differential equation

u" +u = 37 (2.7)
h

where ( )' means differentiation with respect to n. The solution to

eq. (2.7) is given by

u(n) = i2-+ [u(o) - ﬁﬁ-] cosn + u'(0) sinn (2.8)
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Alternatively eq. (2.8) can be written as

u(n) = ﬁﬁ-[1 +ecos (n+v)] (2.9)

By comparing eqs. (2.8) and (2.9) we can obtain the constants which
appear in eq. (2.8) in terms of the initial true anomaly. (Note that
this step is not necessary but only identifies the constants in eq.
(2.8) with those associated with the classical results.) The initial
conditions relate to the true anomaly as follows:

B_

ufo) - & = ﬁz-e cos v, (2.10)

>

u'(o) = - ﬁ?-e sin vy (2.11)

Furthermore, the true anomaly could be determined from

Tan v = —4{0) | (2.12)

©  u(o) - wh?

and the eccentricity, e, from

, Luto) - ﬁz 1% + u'(0)?
e = s (2.13)

If the initial position and velocity are known, the constants required

for eq. (2.8) can be determined with the help of eq. (2.5) to be
]
u(o) = —
Yo

2 2
i) =a=F% -, ev,) (2.14)
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N The problem is still n i . (2. i RSO
p m is sti ot complete since eq. (2.8) establishes ) E:::é
" only the magnitude of r and not its direction in space. To address :}E;b
-: r‘:"‘f‘:
é: the problem of determining the direction of the position vector we can k:}-*
2 track the behavior of a unit vector along the position vector. Such E
W
N a vector designated as r is defined by R
fo T
r=c (2.15) ‘
It is easily shown that
P o= hxf . (2.16)
where
h = h/h.
9 It follows that
- M+ r =0 (2.17)
2 The solution to eq. (2.17) is
a - A foll :
: r(n) = ro €OSn + ro sinn (2.18)
" where
y o = To/To
: (2.19)

l\' - - .Y
ro = h/h x o

If the initial position, Fo and velocity Vo are given, along with
the change in true anomaly, the new position and velocity can be

determined as follows:

n D
LN N N

Given: Fo’ Vo, n



e e o
® e,

Find: 1. h=1r_xV

3. u'(o) = %}— (Fy - v )
0
r

~ _ o
4, rO--YZ
5. = h/h x "
6. u{n) = ﬁ2-+ [u(o) - E?-] cosn + u'(o) sinn (2.20)

h

7. u'(n) = -[u(o) - ﬁz-] sinn + u'(0) cosn

-~ =h Al .
8. r(n) ro €osn + ro sinn

9, r'(n) = - ?0 sinn + ?6 cosn
10, F=17
M. F=V= h(ur' - u'r)

A short discussion of eq. (2.20) is in order. By using the
change in true anomaly as the independent variable, straightforward
solutions are available for finding the final position and velocity
given the initial position and velocity. More important, however, is
the fact that the solutions do not use the classical orbital elements
in any manner and hence are not subject to any singularities which
can occur when these elements are used. In addition the results are

independent of the type of orbit encountered and are valid for
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elliptic, parabolic, and hyperbolic orbits and hence the equations can

be considered universal equations.

Time Equations

Unfortunately reintroducing time into the problem is not quite as
straightforward and leads to some complications. Although there is a
universal formulation for determining time in terms of the change in
true anomaly [20], there are still some unanswered questions which
make it unreliable for coupling with an optimization code. Consequently
for now we must resort to classical time calculations in terms of the
true anomaly. Further it should be noted that there is a different
calculation for each type of orbit. To separate these out it is
necessary to determine the two orbital elements a, semi-major axis
and e, the eccentricity. In addition, one needs to know the initial
true anomaly and the change in true anomaly. Once this information

is established, the time calculations are as follows:

Elliptic Orbits [22,23,24]

1. Examine the change in true anomaly to determine the number of
orbits required and subtract those out.
2. Determine the final true anomaly.

3. Determine the eccentric anomaly at the initial and final point

from
/T - €2 sin vy )
Tan Ei = =T Cos v i=1,2 (2.21)

1

4, Determine the time of flight from perigee to initial and final

true anomaly from
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t; -t = (E; - esinE)/n i=1,2 (2.22) ALY

= &- T"p..
n 3
a3

a = semi-major axis

5. Take the a fference in the times determined in (4) and add on an

L J

R A eI
D I
e S

SN
Lot e e ey

orbit period for each additional orbit established in (1).
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TOF = (t2 - tp) - (t] - tp) + N.P (2.23)

«
(4

v

)
Ld

"

"

number of orbits
= 27 q/ g—- = period of orbit.

Parabolic Orbits [22,23,24]

where N
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1. Compute time from perigee to beginning and final location directly

P <

[N ‘..‘

AN L
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s

from
Vi 1 3V =
. t, - tp = (Tan 5+ 3 Tan” 5> )/2n i=1,2 (2.24)

- where i =4//E;
- p

and p = h2/u = orbit parameter

2. TOF = (t, - tp) - (t - tp) (2.25)
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Hyperbolic Orbits

1. Compute time perigee to beginning and final location directly

from
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Conventions and Non-Dimensionalization
The time-of-flight relations above require the two orbital
elements (a,e) and the initial and final true anomaly. In most cases
E' these calculations are straightforward and no problems are encountered.
However, one should note that for circular orbits the true anomaly is
not defined. A standard default for definition of the true anomaly

for a position on a circular orbit has been defined as the angle from

the ascending node line to the position vector. If the inclination

- of the orbit is zero, the true anomaly is measured from the inertial x
A axis to the position vector in the plane of the equator. It should be
- pointed out that to date no problems have been encountered with this

‘ convention and none are anticipated. However, it is a weakness in

‘? the formulation and should be noted.

A11 calculations for the position, velocity, and time are per-

formed using non-dimensional units. These are obtained by defining

: R
- a reference circular orbit and dividing lengths by the reference orbit 5%2%3
radius and velocities by the reference orbit velocity. A unit of ;‘Ff?:
% time, therefore, becomes the time it takes to travel through one i‘vgg
p) radian in the reference orbit. This procedure for non-dimensionaliza- *

tion causes all the equations to appear as if they were the dimensional

v‘..-.'..-‘vr Lat 4t it e e Ten R TR A SR IR S WARE Ny e -t -
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equations with the gravitational constant u=1, Typically the reference
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orbit is at the radius of the earth's surface.
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Rotating Earth
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While waiting on the launch pad the interceptor performs an
inertial motion due to Earth rotation. This is calculated by first
converting the initial inertial position from Cartesian to polar
representation (declination and right ascension). The right ascension
is altered by adding to it the (prescribed) angular change; the
result is then transformed back to Cartesian co-ordinates. To preserve
similarity with the treatment of Keplerian arcs the change in right
ascension is prescribed and the time is calculated by dividing by

the (fixed) Earth angular rate.

. Velocity Impulse
3 The code keeps track of the inertial position and velocity,
5 represented in Cartesian coordinates, at both ends of each coasting
arc. At the junctions of these arcs, impulsive burns are modelled
as discontinuities in these quantities. In the current version only
the velocity vector suffers a discontinuity; the position is the same
before and after an impulse. Note that other approximations which
L account for some effects of finite burn-time (e.g., Robbins’
: generalized impulses) could be handled in the present structure of
the code.
The simplest impulse is described by three parameters which
represent the velocity impulse in Cartesian co-ordinates. Early in

. the present research it was thought that certain special maneuvers
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might also be of interest so that two additional impulse-types are a

possible. One is a two-parameter impulse to allow a change in

velocity, in the current orbit plane. The third impulse is a one-

parameter affair where a component of velocity is added to cause a

pure plane change. These additional impulse-types were not used

extensively in the research.

The Clohessy-Wiltshire (CW) Equations

The CW equations describe the motion of a particle (satellite)
in space relative to a coordinate system which moves as if it were
fixed to a particle moving in a circular orbit. Consequently if the = ;
original orbit of the target were circular, the target position would Ffff?
always be at the origin of the CW coordinate system. If the coordinate o
system is oriented as shown in Figure 2.1, the relative motion of a
particle moving in the same force field as the reference circular
orbit is described by the CW equations given by

X -2wy =0

i+ 2ux - 3%y =0 (2.28)

'Z.+w22=0

where w = angular rate of axes system which moves in the reference .

ciircular orbit

By a suitable selection of a time scale, the above set of equations
can be simplified and non-dimensionalized. In particular define a
non-dimensionalized time (really an angle) as t = wt. Then the above

equations reduce to

AT AT IR (O PR IR A gy A ey '’
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:I. X" - 2_)’. =0
: y'"+2x' -3y =0 (2.29)
e ze0
i where ( )' = Qé?l

and x, y and z can be scaled by any arbitrary length. Typically the
reference orbit radius is used although any convenient length is

' ) appropriate. It is this property that allows results obtained from
the CW equations to be scaled up or down directly [25].

A solution to the above equations is given by

1 ]
i [(x ) (1 6(r-sint) 4sint - 31 2(1 - cost)] Xq ) . -
» " "—"7::'\:
. J y 0 (4-3cost) -2(1-cost) sint Yo e
. } = ::_;.‘.:.T
x! 0 6(1-cost) (4cost - 3) 2sint xS A
2 y' ) L0 3sing 2sint cost | |y b
= (2.30) 3 ,'*E
e F2 el
\: ? " (.‘
: o 2555
-
o z cost sint z, AN
5 = (2.31) KNOSN
o z' -sint cost z! SN
. 0 s$§é‘
N
:’ where x = x(o0), xé = x'(0), etc. RTLY
F . Y-—‘ t
o The solution exhibited by eq. (2.30) can be utilized in several :3?3’
* ways. Of particular interest are the solutions to initial-condition fﬁgg?
< O
i problems, and to boundary-value problems. For the initial-condition ?iié”
— e ¥ 2
E problem, eq. (2.30) can be used in its present form to determine the 31;:2
; position and velocity at any non-dimensional time, t, given the initial 'Giﬁﬁ
- ar
! position and velocity, the so-called Kepler problem. On the other -..r
8 R
- QAR
= R3¢
i "‘.?:'
e o e et mn mea i A nemevrae s . ) e . B
A S S A L L A S I S R S Y, 2R L L Y A N R N N PR AR OAN S RN N AN AT




hand if one is given two positions and the time-of-flight between
them, it would be useful to be able to determine the initial velocity
required to carry out this intercept maneuver, the so-called Lambert
(or Gauss) problem. For this boundary value problem it is necessary

to partially invert eq. (2.30) in order to obtain the following

result: (x
xé 1 sint 2(1-cost) -sint 14(1-cost)~6tsint| |y
—_ <
v =4 2(1-cost) 4sint-3t -2(1-cost) 3tcost-4sint Xo
)
Yo
(2.32)
where
s = 8(1 - cost) ~3tsint
The computer code for the evasive-maneuvering sequences uses .
R
the CW equations to generate the coasting arcs. As in the interceptor SRR
model, these arcs are joined by velocity impulses which allow dis- 'E{Sii
continuities in velocity only. Since the CW equations can be solved lll!;
'..-: P
analytically in terms of time, time rather than true anomaly is used E}}}}
5‘ . .-F,.
e

as the independent variable for the evasive-maneuver calculations.

i Consequently the awkward time equations are unnecessary. « LA
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FIGURE 2.1
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3. INTERCEPT-MANEUVER-SEQUENCE STUDY E}j}
The class of problems studied here involve efficient maneuver fiiﬁ;ﬁ‘
sequences to intercept a non-maneuvering target in low-Earth orbit. Fi&:k
In all of the present studies the target is in a circular orbit at 5fﬁf3
v00 km, inclined at 65°, This is typical of targets used in Soviet ? 3
ASAT-system trials. The period of the target's orbit is about 97 ) ?3§f?
minutes (see Figure 3.1). %;Zf?j
The interceptor is to be launched from a location at 45° 38' N. 7
latitude (Tyuratem). It is clear that the intercept problem depends ;;\
on many parameters including the target's orbital elements and the iiZ"f
interceptor's launch latitude. Somewhat more suttiy the problem also 32;25
depends on the relative 'phasing' between the target's orbital motion ii;iij
and the interceptor's (inertial) motion while on the launch pad. We E;;:x_
next present a way to quantify this phasing. It shoﬁ]d be noted, how- EE%S%E
ever, that since the periods of the two motions need not be commensurate E;EI’;
the 'phase’ will change from day to day. g:!zf
We define epoch to be the time when the launch point is one E;Egi&
orbital period (of the target) west of the target's orbital plane. tgigtf
Thus, one period after epoch the launch point will be in the plane of ) ‘i:v

the target's orbit (specifically where the target would be ascending

or moving North). For convenience we measure the target's true

anomaly from this point of intersection between the orbit plane and
the launch latitude., In these terms we define phase angle to be the fni:j
target's true anomaly at epoch. Note that one orbital period after

epoch the target will return to the same true anomaly and the launch 'l!k
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point will be at the location of zero true anomaly (see Figure 3.1).

As noted above the phase angle may be different at subsequent
orbit crossings by the Taunch point. In an operational setting it
is expected that the exigency would rule out the possibility of

waiting for a subsequent orbit crossing.

General Formulation

The scenario assumed is as follows: Starting from epoch the ‘.j .
interceptor may wait on the launch pad for some time. Following the .
initial impulse the interceptor coasts along an ascent ellipse. At
some point a second impulse is applied and this is followed by SN
another coast. A third impulse is possible and the subsequent coast i
must lead to intercept. At this point a fourth burn may be needed to
produce velocity match, possibly within a given tolerance. "

Such a maneuver seguence is specified by thirteen parameters
as enumerated inTable 3.1. Since the target does not maneuver, its
location at intercept depends on a single parameter, namely, the
coast angle, which is a fourteenth parameter. The components of the
fourth burn can be computed from the condition of the required
velocity match between the two vehicles. Each impulse adds a total
of four parameters, so that a three-burn intercept sequence requires
ten parameters and a two-burn sequence requires six.

It is clear that an 'arbitrary' choice of these fourteen E;.:.‘
parameters would not produce a final position of the interceptor

that matched the target. Indeed, the times at which the endpoints

were reached would likely not match either. Thus, we must add four
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important constraints, the first four in Table 3.2. If these constraints
are satisfied then the target is indeed intercepted. The additional
nine constraints are generally inequalities and will be discussed

later.

Nonlinear Programming

Thus far we have described many of the ingredients of an optimal-
intercept problem. The parameters needed to specify the maneuver
have been listed and the constraints have been enumerated. As an
index of performance the sum of the impulse magnitudes is a

measure of fuel-required. Thus, for minimum-fuel intercept we take

f(x) =

ne~1p.

a vyl

i=1

and consider the nonlinear-programming problem: find x to minimize

f subject to the constraint

g>0.

The first four constraints are equalities while the last nine
are inequalities. Of these, certain constraints (g8, 99> 977 and g]3)
are needed to insure that the interceptor's path does not strike the
Earth, Other constraints (96’ 97> 919 and 912) are needed to prevent
the solution algorithm from choosing a negative coast angle (and

hence a negative time-of-flight).

The algorithm used to solve this problem is a modern quasi-

Newton scheme with important features for adapting to difficult

problems. It is described in Appendix A.
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. Minimum-Propellant Intercept-Maneuver Sequences

The first problem studied is that of minimum-propellant, time-

3 open intercept. For each phase angle one seeks an intercept-maneuver
sequence which uses the least propellant. The total time-of-flight
inequality constraint 9g (see Table 3.2) was specified as 500 minutes,
which is sufficiently large that time is effectively not constrained.

: . Fig. 3.2 displays the total-fuel cost as a function of phase angle. In
these calculations it was required that the two vehicles rendezvous,

y that is the last burn had to produce a velocity for the interceptor

equal to that of the target.

Some of the salient features of these optimal-maneuver sequences
are shown inFigs. 3.2-3.5. From Fig. 3.3 it is seen that for phase-
angles in the range [-170°, -~20°] the launch is timed to occur with
the target about 2° past overhead. To accomplish this with large
negative phase angle the launch must be delayed well beyond the point
where the launch site passes through the target's orbital plane. For
example, with a phase-angle at -150° the launch occurs with the
launch-site about 10° East (past the orbital plane of the target).
The impulse trade-off is such that it's preferable to 'pay' for the
out-of-plane condition at launch in order to obtain favorable target
geometry. For phases in this range (i.e. [-170°, -20°]) the inter-
cepts are nominally three-burn affairs; however, the third burn (at
rendezvous) is very small (|a V3| = 5 ft/sec). After the second

v burn the interceptor is in nearly the same orbit as the target. The

{ optimization algorithm chooses to have the interceptor fly in a nearly

station-keeping mode with the very small third-burn timed to occur
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when the vehicle velocities match most closely. In effect, then, the iiJ;
fuel-optimal maneuver sequence is a direct-ascent intercept. For the Sﬁfﬂ
phase-angle at -150° the intercept is accomplished about 20 minutes Eé;i
after launch. éﬁé&
For phase angles in the range [60°, 190°] the launch occurs 'E?

with the target about 70° past overhead. To achieve this target
geometry the launch is 'early'; that is, it occurs before the launch . ;ﬁi;
site reaches the target's orbital plane [West]. For example, with a ?:ﬁf
phase-angle of 90° the launch occurs with the site about 1° West of i;;
the orbital plane and the target 69° past overhead. This first burn E:;;
is at nearly zero path-angle and results in a near-circular orbit at Eﬁgﬂ
the Earth's surface. The second burn (|a V2| = 600 ft/sec) puts the ;;é;
interceptor in an orbit that is (nearly) co-planar with the target and 22;5

with apogee altitude at 600 km. The minimum-radius constraint is
active on the "ascent" ellipse and on the orbit segment leading to

intercept. The third-burn is a substantial (|a V3| * 570 ft/sec)

“ a6 8.
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interceptor. In this family the intercepts are rather long affairs;
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e.g., the 90° phase case takes about 198 minutes from launch, and about
289 minutes from epoch.

For some intermediate range of phase-angles one finds two
distinct (local) minimum-fuel intercept sequences. These sequences
differ principally in the second and third burns. For example, at
15° phase-angle both sequences initiate launch when the site is at

the target’s orbit plane (and hence the target is 15° past overhead).

In both cases the ascent ellipse is co-planar with the target and has
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an apogee near 600 km. In one sequence the second burn (|a Vzl = 475
ft/sec) occurs near apogee on the ascent ellipse and it effectively
adjusts the interceptor's period so that intercept will occur one
orbit Tater. The third burn at about 85 ft/sec is a speed-up maneuver
to match velocity with the overtaking target.

The second sequence also applies the second burn (|a V2| = 525
ft/sec) at apogee of the ascent ellipse. Since the second burn is
larger than before, the interceptor's period is now closer to the
target's so that the intercept takes three orbits, instead of one.

The final catch-up burn is now reduced to 37 ft/sec. Note that the
sum of the two final burns is nearly the same in both sequences. The
time to intercept is, however, quite different (140 min. vs. 330 min.).
One expects that there is another sequence 'between' these in which
the second burn is sufficient to achieve intercept in two revolutions.
Indeed, there are likely to be other local minima with four-, five-,
etc. revolution intermediate arcs.

At a phase of 45° another maneuver-sequence family appears with
the same character as the 90° nhase case (i.e., "ascent” to a
circular orbit at one Earth-radius, a second burn to achieve intercept
at apogee and a third burn to rendezvous). The launch timing is dif-
ferent from the [60°, 190°] phase family in that the launch site is
nearly in the orbit plane.

The launch doctrine that emerges from this study can be described
with the help of Fig. 3.5. The heavy curve is a cross-plot of launch
Tongitude (from the target's orbit plane) and target true-anomaly

(from overhead) at launch. Also shown are lines of constant phase.
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Since the target's orbital period is about 97 min. while the Earth’s %ii
rotational period is 24 hrs these Tines have a slope of about 14.8. ifz
Given any initial launch-site longitude and target true-anomaly one gﬁﬂ
moves along the constant-phase line through the point until it inter- Efﬂf
sects the cross-plot. zgzz
The last part of this initial study is a first look at the . L;:
effects of a time-constraint. Operationally one expects that early %if
intercept may be of value. Indeed, with a given booster configuration '}?
there is little virtue in saving fuel at all, Thus, one is led to ;;i
consider how 'quickly' intercept can be accomplished for a given E;:
total-impulse budget. This may be done by introducing a time EZ%;
constraint (i.e. reduce the total time specification in constraint ;?g;
95)' Note that only total time is considered (i.e. 'wait' time on é;z
Earth is included in the time calculation). It would also be worth- 3Eﬁ
while to consider constraining the time from launch to intercept. -:"(
E

This, in effect, amounts to the warning time and makes evasion, if

u"

-
2
»

any, more difficult. This version is considered in a later section.
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The phase-angle parameter, defined and used above, is very
valuable in understanding the structure of minimum-propellant inter-
cept maneuver sequences, when the final time is free, Perhaps of
equal importance, at least in an operational setting, is a time
constraint,

Since there is a genuinely two-parameter family of problems
(phase-angle and elapsed-time) it will only be possible to present
representative results. To this end consider the 90° phase-angle case.
The minimum-propellant time-open maneuver sequence was described above.
It consists of a launch-burn into a circular orbit at the Earth's
surface; a second-burn to a Hohmann-like intercept ellipse with apogee

at the target's altitude and, a rendezvous burn after one and one-half

revolutions in the intercept ellipse. Intercept occurs about 290
minutes after epoch and requires a total delta-vee of 26,500 ft/sec.
If one now restricts the allotted time the propellant-cost will, as
expected, increase. With a maximum time of 275 min. an additional
155 ft/sec delta-vee is required, while a 265 min. intercept requires
625 ft/sec more than the time-open case.

Further restricting the time produces a result that, at first,
seems somewhat surprising. With a time allotment of about 250 min.
one finds a maneuver-sequence which requires only an additional 145
ft/sec. While this seems puzzling, if one examines the maneuver
sequence, it is seen to be quite different from that of the time-open
case. The initial orbit has an eccentricity of .06 and a semi-major
axis of .96 Re; it is not a surface circular orbit. At a point past

apogee on the ascent ellipse a second burn is imparted. This results
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in an orbit with perigee at zero altitude and apogee at the target's
:j altitude. After about one and one-half revolutions, at apogee in
this intercept-orbit, a third (rendezvous) burn is imposed.
If one continues to restrict the time allotted below 250 min.
the minimum-propellant intercept sequences remain of the type just

described until the time reaches about 200 min. At this point a third

family emerges which is similar to that of the time-open case, except
that the intercept ellipse is followed for only one-half an orbit,
- not one and one-half orbits. This is reasonable since these intercepts

occur in the (target's) orbit prior to those of the original family.
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When the time allotment is restricted to 150 min. a fourth

5

family is found. These orbits are similar to those in the second

A_,,
G hlels
L)
a3

family except that the intercept ellipse is traversed for only one-

.;? half an orbit, in contrast to the second family of orbits which :{:{j
E; employed about one and one-half revolutions. §§§§g
Finally, when time-to-intercept is restricted to 90 min. the eSS

intercept sequence becomes a two-burn affair. Initially the first k:;ﬁi

é; burn results in an ascent ellipse with apogee at the target's E{Eﬁé
altitude. The second burn produces the required velocity match. . Eifi

B The results of this fuel-time trade-off are shown in Fig. 3.6. ti&;ﬁ
;} The solid curves depict performance along each of the five sub-families - %35;5
; described in the preceding. Perhaps the most significant result is :*ﬁ

that a small increase in propellant allocation can greatly reduce the

time-to-intercept. Specifically, an additional 675 ft/sec of delta-

vee reduces the time from about 290 min. to 90 min., Thus, it would
seem that the Soviet ASAT is fundamentally capable of much more iﬁy
)

1 rapid engagements than the observed tests would indicate.
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Mimicking Soviet ASATs

The intercept maneuver éequences that emerged from the above

- formulation are quite different from the procedures employed by the :jyiéﬁ
é Soviets [9]. The observed pattern of the test shots suggests that E;Sisg'
y they were constrained, for various reasons including tracking and kill- E}JQ&
assessment considerations. Thus, we are led to introduce additional %nﬁff-
"operational" constraints into our problem. ﬁfEEEE
It has been observed that Soviet ASAT intercepts occur while the : .
. target is passing near Moscow. To implement such a constraint one E;;;_
looks for a time (from epoch) when the target is closest to Moscow. EE :;:
In general one expects two close approaches; one with the target ii;é;
passing East of Moscow and a second, approximately one period later, ';
with the target West of Moscow. i
; In order to investigate these close approaches a small FORT2AY
code was written, The launch-site is located at epoch one period Wost
of the orbit plane and a phase of the target thus is specified. True
f anomaly change of the target is varied on [0,27] and the minimum is
' sought for the Moscow-target separation distance. The interval
[2n,4n] is then searched and so on. One of these produces a close
approach just East of Moscow and the next produces one to the West.
: Since the target's orbit is circular, the time-of-flight is simply
; related to the target's true anomaly change. The results are shown in
. Fig. 3.7 as a function of phase angle, Note that for each phase there
are two solutions: East and West.
A
One might select from the two possible intercept points the one E?:.t:
- that is closer to Moscow for test purposes. Miss distances are shown ﬁi;'-f
as a function of phase in Fig. 3.8. Thediscontinuities are a
: L
_;r._,V-:._-:__.‘...'\.-__,;“.;__.:...~_;.:_;‘:.‘:..:..;-:\.'\:,f‘:.'\'.' T L N N D B I D A W A TN R R N AT Ny
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consequence of the fact that, depending on the phase, the closest
approach may occur on the 2nd, 3rd or 4th pass near Moscow. In an

operational setting the earlier of the two close approaches might be

favored. H
The candidate family is described by the lower bound from
Fig. 3.5. Note that for phases in the range 135° < ¢ < 300° the R

intercept point is East of Moscow, while other phases produce inter-

AR LARWARAR L LDOEA, R RAAS
[}
'I
”
*

; cept to the West. The "fold" at 360° is smooth, but there is a switch fi&?&
;3 between the East-West families at 300° phase. The switch at 135° i;;i;
;i phase angle is more a matter of semantics. At this phase the inter- :ff\?

cept occurs directly North of Moscow; slight perturbations of phase :;;;:

produce intercepts to the East or West. ;;zgi
- This family has several deficiencies. Most significantly, inter- ;:“f?
. cepts West of Moscow take place about one orbital period (~ 100 min) :\%.;
- after the previous Easterly intercept would have. Secondly, since ggt%
‘. Moscow is about 26° West and 10° North of Tyuratam, it arrives at the P‘:
S target's orbit plane about 140 minutes after Tyuratam. This time ;f;hg
? must be made up by a costly trade-off between a delayed launch %;}Ei
E (Tyuratam East of the orbit plane) and a longer-duration intercept . ‘;%;;;
?T orbit (higher energy). For these reasons it was decided for purposes :iﬁtzi

of the present calculations to intercept the target on its Easterly . i%é;g

pass closest to Moscow (i.e., on the next pass the target would be ?fﬁé

West of Moscow). Note that this will not necessarily provide the
(global) minimum-fuel intercept. Indeed, results show that for
certain phases intercept on a prior pass (i.e., well East of Moscow)

require less fuel.

G
b 0
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! 0
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In addition to the intercept point specification several new
constraints are added exploratively to force the maneuver-sequence to
be similar to that of observed Soviet ASAT shots. It has been
observed that the Soviet sequences produce final intercept orbits
that are nearly co-planar with the target's orbit. To enforce this it
is required that the second burn occur at the intersection of the
ascent ellipse with target's orbit plane and that the 2nd burn be
such as to produce a new velocity vector that Ties in that plane.
Since both the position vector and the velocity vector (after the 2nd
burn) 1ie in this plane it will also be the interceptor's orbital
plane. Note that the second burn is not required to be a pure plane
change; some energy change is permitted. The two new constraints

are

= b, Pty =

[fa)
|
i
o

and

= <h. ¥ +
g = <hTs VI(t3 )> 0

q
In these equations, as in Chapter 2, ET is the angular momentum of
the target's orbit, FI(t3') is interceptor's position at t;, the end
of the ascent orbit, and VI(t3+) is the interceptor's velocity after
the second impulse has been applied. Constraint gp requires that the
second burn occur in the target's orbit, plane while gq requires that
the subsequent orbit be co-planar with the target.

A family of minimum-propellant maneuver-sequences with phase-
angle as a parameter was studied numerically. Some significant

features of the family are presented in Table 3-3. For this study

LA A Al A=A A
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the final burn (rendezvous) was required to match the relative velocity

within a specified tolerance. In each case the velocity match was Efﬁﬂf
sufficiently close that the fourth burn was omitted. Indeed, for most ESEiE
phase-angles (30° exception) the third burn (catch-up) was virtually g{itﬁ
absent. Thus, the second burn, which was required to make the Lfﬁf:

interceptor's orbit co-planar with that of the target, generally in-
l cluded the necessary in-plane speed change to effect intercept.
In all cases the flight-time (from launch to intercept) is about

90 min. The interceptor remains on the Earth's surface until the

target is about 25° past the intersection of its orbit plane with the ;fxfl

(]

parallel of latitude through the launch site. The interceptor goes

about one-fourth of a revolution (to near apogee) in an ascent ellipse.

The second burn provides the required plane-change and puts the inter-

ceptor in an orbit with perigee at one Earth radius and apogee beyond e
the target's altitude. The interceptor travels about 300° in this -32§.
orbit. A third burn occurs on this segment but is of such small magni- ;: ;:
' tude that the orbit is virtually unchanged. Intercept occurs near g;:;%
(but not quite at) apogee on this orbit with the target overtaking the i;;i?
; interceptor. The speed difference is typically 500 ft/sec, well within ;'ﬂ§;

: the allowed value.
The relatively long (300°) coast on the intercept ellipse warrants
further testing to validate the optimality of these maneuver-sequences.

A test based on primer-vector theory (see, for example [8]) would be an

. attractive addition to the current analysis. 7
. N
" In addition to the basic family, several problems were investi- I
.

F gated to gain an indication of the effects of certain specific .i"‘
RNR

RRRY

. N N
I [
;o ‘x,j;
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features. For example, the minimum-radius constraint was specified

as one Earth-radius in all cases discussed above. The phase-angle-
equals-330° case of Table 3.3 was re-run with the minimum radius value
of 1.02 Earth radii. The results are displayed in the next-to-last
line of Table 3.3. It can be seen that the maneuver-sequence is nearly
the same as before, except that the higher minimum radius results in

an increase of 90 ft/sec in the total propellant requirement,

A second special problem was formulated to assess the impact of
the plane-change requirement. Specifically, the phase-angle-equals-
120° problem was re-run with the constraints gp and gq (defined above)
omitted. These results are shown in the last line of Table 3.3. The
maneuver-sequence is again quite similar to the constrained 120°
phase-angle case (5th line in Table 3.3). The less constrained
maneuver is slightly more fuel-efficient; it requires about 160 ft/sec
less total impulse. The third impulse, which is not shown in the
table, is 530 ft/sec. This is much larger than the constrained cases
which typically have third impulses of several ft/sec.

Two more attack families were generated in further attempts to
approach realism., For one of these the minimum-fuel index was retained
but the first-burn magnitude was specified. The rationale for this is
that an existing space booster (SL-11) is employed for launch without
provisions for shut-down and re-light., A first-burn delta-vee of 1.03
was assumed as well as a velocity-match tolerance of 1000 ft/sec. at
intercept. Coplanar flight following the second burn was required.
The results are shown in Table 3.4. The maneuver sequences are

typically three-burn; for a range of phase angles the intercept burn




........

32

fades to zero also, resulting in two-burn sequences.

Fragmentary results for a minimum-time-of-flight family are
given in Table 3.5, Alterations were 1.03 delta-vee first burn and
1.15 delta-vee total. Three of the four maneuver sequences calcu-
lated exhibit four burns; in one the intercept-burn is missing.
These generally resemble the observed Soviet ASAT system shots. It
should be borne in mind that there is considerable arbitrariness in
the allocations assumed. A more thorough study and comparison with

flight data is of future interest.

Summar

Perhaps the most significant insight that can be gained from
the intercept-maneuver-sequence study is that the current Soviet ASAT
approach has the potential to be considerably more effective than the
tests to date would indicate. That is, the documented Soviet tests
have employed maneuver sequences that use more propellant and allow
more warning time than the "optimal" sequences (in the sense and with
the constraints employed here).

While we have provided no explanation for the observed Soviet
intercept strategy one may hypothesize that the current Soviet ASAT
could be made considerably more effective by:

1) better communication for transmittal of commands

2) more flexible software and hardware to generate and

implement burn commands

3) improved tracking and kill-assessment capabilities
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These are mostly external to the fundamental interceptor design and
1ikely represent planned improvements in the normal course of develop-
ment. In systems-optimization terms they represent relaxation of
constraints. Other obvious opportunities for improvement are the

use of higher-performance boosters and improved on-board sensors for

target acquisition which would permit higher closing rates.
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Table 3.1

Optimization Parameters

Number Description
1 Wait-angle on Earth's surface
2,3,4 Components of first velocity impulse
5 Coast-angle along ascent orbit
6,7,8 Components at second velocity impulse
9 Coast angle along Kepler orbit
10,11,12 Components at third velocity impulse
13 Coast angle along Kepler orbit
14 Target's coast angle along its Kepler orbit
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Table 3.2
Optimization Constraints

Number Description
1-3 Difference of position components of target and inter-
ceptor
4 Difference in total time-of-flight of target and inter-
ceptor
5 Difference between input time-of-flight and target's tof
6 Interceptor's wait time on Earth
7 Difference between coast angle on ascent ellipse and
input minimum coast angle
8 Difference between coast angle where ascent ellipse re-
encounters the Earth and the actual coast angle
9 Difference between path angle at launch and input
minimum path-angle
10 Difference between coast angle on third orbit and
minimum coast
1 Difference between least radius on third orbit and
input minimum radius
12 Difference between coast angle on fourth orbit and
minimum coast
13 Difference between least radius on fourth orbit and

input minimum radius
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FIGURE 3.1 Problem Geometry
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l 4, EVASIVE MANEUVERING

A satellite in an orbit which permits it to carry out some

: strategic function would best have the capability of maneuvering away
! from its location to avoid threats. In addition, it would be
desirable to be able to return to the same orbit or, for some missions,
; . to return to the same position in orbit the satellite would have

! occupied if no evasive maneuver had taken place, that is, return-on-

t station. In order to extend the lifetimes of such satellites, these
evasive maneuvers should consume minimum fuel. This section

evaluates various evasive-maneuvering sequences as to their effective-
ness in avoiding the threat, returning on orbit or on station, and

in minimizing fuel-consumption.

In order to complete a successful evasion, the closest approach
between the pursuer and evader must exceed some wminimum distance
dictated by lock-on capability of the ASAT search sensors. In
general this minimum miss distance will be small compared to the
nominal orbit radius. Furthermore studies of typical interceptor

ascent trajectories show that the final orbit segment which approaches

the target is generally in-plane or nearly in-plane with the target

orbit. These observations indicate that the linearized analysis of

Clohessy and Wiltshire [1] is adequate for a preliminary investigation. 55;3;;
In addition the simplified analysis will give a better insight to t -
the problem. :::Ei:

The solution to the CW equations was presented earlier in the Ef?h;
form of position and velocity of the satellite as a function of time. ilii,

» Y Y Ve LT e e Lm L A Te b "m - e "
S WA R A o G S LN A LR LR L L OUR T G AT I O



48

_~.;.A.1..

érs

a

Because of the simplicity of this solution certain evasive maneuvering
- results can be obtained analytically. For example the direction of

~ thrust to maximize the distance from the "on-station" location for a

given impulse (delta-V) can be determined analytically as a function

of evasion (or warning) time. On the other hand maneuver sequences
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such as an evasion and return-to-orbit or return-on-station are too

]
»

complex to handle in an analytic manner. For these sequences the .
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analytic trajectory solutions of the CW equations are used in con-

junction with the optimization code to establish minimum-fuel
maneuvering sequences. In the following sections various optimum
maneuver sequences are presented,

: Before examining these maneuver sequences in more detail we

';ﬁ should note that the CW solutions given by egs. (2.30) and (2.31)

n reveal that the in-plane motion is uncoupled from the out-of-plane

: motion. Further, the out-of-plane motion is oscillatory in nature
with respect to the orbital plane. Hence any evasive maneuver which
occurs over a substantial amount of time would not include an out-of-
plane component of motion since such efforts would eventually be

i: wasted as the vehicle returns to the plane. These observations were

verified in Reference 3. Consequently the remaining discussion will

be restricted to in-plane maneuvers only, which are governed by eq.

(2.30).

-t

Equations (2.30) and (2.32) allow one to gain considerable in-

N

".

sight into the problem because of their simplicity. Further, some

Adu

manipulation of these equations allows certain results to be obtained

analytically. For actually describing trajectories in space, these
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equations are limited in accuracy depending on the distance from the
origin and length of time considered. However, for the purposes of’

this study (comparisons, trends, etc., as opposed to detail trajectory

Chd et

calculations) these equations can be used for quite Tong time perioa-

.

of interest. The results presented can be scaled up or down directly.

(s
Juldd o

Both distances and velocities scale the same, doubling the velocity
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. will double the corresponding size of the maneuver.

Evasive Maneuvering Away from Origin

There are several strategies which may serve as bases for evasive
maneuvering. The most elementary strategy is that of moving as far
from the starting point (the origin) in a given time for a given amount
of fuel (or delta-V). Here it is assumed that the interceptor is
attempting to get to a specific point in space at a specific time
(intercept time). The maneuver of interest maximizes the distance from
that point at a given time (evasion or warning time). One should note
that the maneuver only considers the position of the threat at the
intercept time and not the trajectory taken to arrive at that position.
Consequently it is possible that during (or after) the approach the

. interceptor and taraet may be closer than the distance calculated at
intercept time [3]. This aspect of the problem is discussed in a
later section,

0f additional interest is the maneuvering the evader does after
the threat is past. Typically, he can remain in the new orbit into
which the evasive maneuver placed him, he can return to the original

orbit, or he can return to the original orbit at the same point he
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would have occupied if no evasion was necessary (i.e., return on

station). Obviously other scenarios are possible, but these are the

ones which seem to have the most utility and are considered herein.

Maximum Distance from the QOrigin

The maneuver to be examined in this section is that of maximizing
the distance from the origin at a given time for a specified amount
of fuel or delta-V. It is useful to represent the initial velocity

required for the maneuver in the form

xé = 8V, cosy @.1)
yé = AVO siny
where AVO = initial impulse required, assumed to be proportional to
the fuel required
y = thrust angle relative to the x axis

If Xo and Yo are zero, corresponding to starting at the origin, and
eq. (4.1) is substituted into eq. (2.30), the square of the distance

from the origin can be shown to be

R2 = Av§ [A COSZY + B sinycosy + C sinzy + D] (4.2)

where A = (4 sint - 31)2 .
B =12 (1 - cost)[sint - ]
C = sin’r :
D=4(1-~ c05r)2

It is clear from eq. (4.2) that the distance from the origin
achieved is directly proportional to the AVo applied. Furthermore

the angle at which the optimal thrust should take place is independent

“» DU A
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: of the magnitude of the AVO. It is easily shown that the angle for E;zgg
N obtaining the maximum distance is given by :(I
fan 2 b RS
. . <
N g s}n; E°S§) (4.3) grtf
Equation (4.3) gives four possible angles for thrusting, only two of
- which yield maximum distance from the origin. The two angles are
3 those which occur nominally in the second and the fourth quadrant. f}%&;
5 Although the distance from the origin is the same for both quadrants, : e
J the solution which gains energy has been shown to be hetter when some
; consideration of the threat trajectory is included [3]. Hence only
; results for thrust (or impulse) directions in the second quadrant are
. presented.
Equation (4.3) was evaluated for several warning or evasion times
and the results are presented in Figure 4.1. These results are
independent of orbit altitude and represent the best angle for an
- initial impulse in order to achieve the maximum distance from the
origin in the specified time.
The distance achieved by the above maneuver depends directly on
the magnitude of the initial impulse (aV) as indicated by eq. (4.2).
Consequently we can select one of two methods to normalize and compare
our later results. For comparing the fuel costs of various maneuver
g sequences for a specific evasion time it is useful to compare against
; the fuel costs for the pure evasion maneuver which led to Figure 4.2,
: In this case the distance at the specified evasion time is held

D AR AN . e
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. constant at the value given in Figure 4.2, On the other hand, for fl£¥
N , comparing fuel costs for the same maneuver sequence over various f-:#
§ evasion times it is useful to hold the evasion distance constant over igﬁ;
' all evasion times. If we pick that distance as unity, the aV for this ;:SE
second normalization procedure is related to that of the first by ;ﬁgl
dividing the first AV by the non-dimensional distance associated with .:Zi
each evasion time given in Figure 4.2. In the following, the tables . %iiﬁ
- will show results normalized using method 1 while the graphs will dis- Esz
'E play results normalized by both methods. EEE;
i As indicated previously Figure 4.2 shows the distance from the ';%E‘
i origin achieved by using the evasion strategy given in Figure 4.1, :ifi
- Here the initial impulse is assumed to be unity. Also shown in Sﬁg&
dimensional units is the distance that would be achieved using this ﬁ%;l
strategy in an orbit 100 miles above the earth’'s surface with an ;{§
initial impulse of 1 ft/sec. The information necessary ior the i§§§
purposes of calculation is given as ié%i
Roop = 2.146848 x 107 ft T
, V,or = 25,600 ft/sec
N w=1.19 x 1073 rad/sec
Evasion from Origin and Return-to-Orbit
The strategy presented in the previous section provides a )
maneuver which maximizes the distance from the origin for a given
j amount of fuel (AV). Such a maneuver ignores the requirement that the
: target vehicle may need to return to its original orbit once the "side-
- step” evasion procedure has been carried out. In order to investigate

~

A I 50 E I I N iy & P * - - - — Lo~ ’ . -
- N -® 1

oA .- A N O Y O

e

b '.;f."(".r




53

this problem and make meaningful comparisons, it is useful to describe
the maneuver as that which uses the minimum fuel to take the target
from the origin to a specified distance in a specified time and then

return to orbit.

In the CW frame of reference a return to orbit maneuver brings

the target back to the x axis only and not to the origin. At the x

. axis the velocity components must be nulled. The usual number of
impulses necessary to do the maneuver is three, the evasive impulse, b

the return~to-orbit impulse, and the final impulse to null the

) ~
velocity. With the distance from the origin specified at a given time, it::f
the object is to carry out this maneuver with minimum fuel.

Under these restrictions one might suspect that with unrestricted NS

time the minimum-fuel maneuver would be to perform the evasive burn,

remain in that orbit until apogee, and return to the original orbit -i&%ﬁ
sy

using a Hohman-1ike transfer. That such a maneuver sequence is indeed ﬂ}{«;
F*’la- "
4,

optimal was confirmed computationally by the optimization algorithm
and the CW model. The results of this activity are presented in Figs.
4.1, 4.3a, 4.3b, and 4.4,

Figure 4.1 compares the initial angle of thrust for this maneuver
with that required for the purely evasive maneuver, It is shown that

for all evasion times the angle required for the pure evasion is

larger by about 20 degrees than that required for the evasion and
return maneuver,

Figure 4.3a compares the initial AV and the total AV for the
"round-trip" maneuver with that required for the purely evasive

maneuver., The results indicate that the initial AV must be increased

o g
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- by a small amount and that the total AV ranges from about 1.5 to 2.0 ;§§3
times the initial AV depénding on the evasion time. The maximum value ﬁi;ﬁ
. of 2.0 occurs when the evasion time corresponds to 180 degrees of f%%ﬁi
orbit motion with the total maneuver occurring over one complete gﬁgﬁ
orbit., In this case the second AV goes to zero and the vehicle simply EEIE:
returns to the x axis in the rourse of moving along the initial ) EE;&;
evasion orbit. Upon returning to the x axis it has the same velocity . ﬁ5§§
5 as it started with which must be nulled. The initial aV for the 180 %:yq
: degree case is just the same as that for the purely evasive maneuver. :EEE?
f Hence the initial AV curve starts at the value 1 for zero wait time iitiE

and returns to the value 1 for the 180 degree case with values slightly .;5..
greater than 1 between these.

Figure 4.3b gives the same information as Figure 4.3a. However,

here the evasion distance is held constant at the value of 1 over all

> evasive times.

Figure 4.4 shows how the total maneuver time varies with the
specified evasion time. All maneuvers take between three-quarters and

one full orbit to complete. The bulk of this time is taken by the

Hohman-1ike return orbit which requires half an orbit to complete.

The solution to the CW equations is characterized by a periodic

g

» . *i“'

motion, with the same period as the reference orbit, plus a secular - ;ﬁf

oy

¥ drift in the x direction. Consequently a return to the x axis is LR

™ made once each orbit period. Figure 4.4 shows only the time required §5§§

% T
N for the first return to the x axis. Additional curves could be
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generated by adding 2kr (k an integer > 1) to the times indicated in
Figure 4.4. A vehicle could remain in its initial evasion orbit for
several orbital periods and then initiate the return-to-orbit impulse,
or the return-to-orbit impulse could be initiated at the first apogee,
but the final velocity nulling impulse could be delayed until several
orbits later. No additional cost in fuel is occasioned by these

types of maneuvers. As a result considerable flexibility in this
particular maneuver sequence is possible.

Several attempts were made to determi. e if sequences which in-
cluded more impulses would reduce the fuel consumption further. All
formulations reduced to a three burn sequence for minimum fuel con-
sumption.

Table 4.1 contains a summary of the results for pure evasion

from the origin and an evasion from the origin and return-to-orbit

maneuvers.
Evasion from the Origin and Return-on-Station FE;::E
. . . . \-"n"-"b'
A more sophisticated maneuver sequence than those described in Cmtal
‘e '\' A
. . . . . . Wl
the previous sections is that in which the target makes an evasive -agqu
LR AN "

|

"side step" maneuver and then returns back to the original orbit to

N R
the same position where it would have been had no evasive maneuver taken ;:2.:5‘,2_7-;3
‘,_;",;.‘f;{.;:
place, i.e., it returns-on-station., Several scenarios are presented 3;?$§Q
DY i?

here which accomplish this task but which in turn consume various
amounts of fuel. On the other hand various features of each strategy
are attractive from the point of view of time and mission requirements,

as well as fuel considerations.
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The first strategy to be examined is that which involves only
two impulses to evade and return on station. " Although it is not

particularly fuel efficient, as we shall see, it has the feature of

RN NN

simplicity and is useful for purposes of comparison. If the CW equa-
tions (2.30) are examined for the case where the initial position and

fiaal position are at the origin, it is easily shown that such an

_..
RS AN

orbit can occur only if the component of initial velocity in the x
direction is zero. Furthermore the time to return to the origin for
any amount of thrust in the y direction is exactly one orbit period.
Hence the strategy is quite straightforward, thrust ninety degrees
from the orbital path and in one orbital period (or any number of
orbital periods) the satellite will pass through the origin. At this

point a thrust equal in magnitude to the first will null the motion

G with respect to the original orbit. It is required that the distance

7 from the origin at a specified evasion time must be the same as those
shown in Figure 4.2 or Table 4.1 for the comparisons made in Figure
4.5a and Table 4.2, and that the distance from the origin be unity for

- the comparisons made in Figure 4.5b,

- It is clear from these results that the simple two-impulse

y = return-on-station strategy is costly fuel-wise. However the computa-

Zf tional requirements are minimal, thrust 90 degrees to the orbit path,

the magnitude depending upon how much warning time exists and how big

t

a miss is required. The required radial velocity is given by

y% = Rmiss/(5 - 8cost + 3coszr)”2 (4.4)

NN ¥

where RmiSS = desired miss distance

warning time (radians)

L)
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An alternative scheme which is attractive from the operational
as well as the fuel-consumption point of view is one where the
previous sequence of evasion and return to orbit is used followed by
a phasing maneuver to enable a return on station. The result would
be a three-impulse evasion-and-return-to-orbit maneuver followed by a
two-impulse phasing maneuver. This five-impulse sequence reduces to
a four-impulse sequence by merging the first phasing impulse with the
final return-to-orbit impulse. The resulting fuel cost is unchanged
by such a merger. Furthermore,several orbits could be complieted in
the off-station position before the final phasing maneuver js completed.
Finally, as shown below, the fuel consumption required for the final
phasing maneuver is inversely proportional to the number of orbits
over which the maneuver takes place. Consequently by taking several
orbits to complete the phasing maneuver the fuel cost is only slightly
more than that required for evasion and return-to-orbit.

In the context of the CW equations, a phasing maneuver is one
which moves the satellite from any point on the x axis to the origin.
An examination of the CW equations (2,30) indicates that such a
maneuver is best carried out over some integral number of orbits. It
includes two impulses of equal magnitude directed along the x-axis
at the beginning and end of the maneuver. The magnitude is given by

the simple expression

X0
! = 4.5
Xo = Bkr (4.5)
where L. = number of orbits required for maneuver,
B R R T R R T P S O O R BN AN O i
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From eq. (4.5) it can be seen that Xy can be made quite small by oA
letting k become large. Hence if time is not a factor, this strategy ‘
appears to be one worth considering.

A comparison of the total fuel used to evade and return to

orbit, to evade and return on station using a one-orbit phasing

SOTEE AP TEERS S

maneuver, and to evade and return on station using a two-orbit phasing
: maneuver is shown in Figures 4.6a and 4.6b. It is clear that if the
time is available, the additional orbit used during the phasing maneuver

reduces the fuel consumption significantly. In fact, from eq. (4.5),

fl the additional phasing orbit reduces the fuel by the amount 1/2 of
that for one phasing orbit.
The total maneuver times for the three cases shown in Figure 4.6

are shown in Figure 4,7, Here it is assumed that the last return-to-

orbit impulse is merged with the first phasing impulse so that no un-
necessary time is spent in the orbit off-station. It should be
emphasized that if it is desirable to remain in the orbit off-station
for some period of time, only the total time for the maneuver is

affected and not the amount of fuel consumed. A summary of

various parameters associated with these maneuvers is given in

., .Fik-" »‘- e

Table 4.3. ~;&;:
g PN
N Although the above maneuver sequence for returning-on-station :f%?&
- . . R
- is a good candidate from both the operational and fuel-consumption LA
1 . : : _
3 viewpoints, the total maneuver time for best results becomes quite ‘f?fz
. -.\ »
. . . . . . RS
. lengthy. However before discussing the time-constrained results in " :é\
’ AN
~§ the next section, it is important to investigate some additional un- AaR
; constrained-time maneuvers. These maneuvers are less flexible than ;'!EA
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those discussed previously in that no waiting time is allowed in any
of the intermediate orbits and consist of three impulses, the evasive
impulse, the return-to-station impulse, and the final impulse to null
the relative velocity. Using this scenario one finds several locally-
fuel-optimal solutions which depeﬁd upon the total maneuver time.
Several of these families of local-minimum solutions are discussed
here,

The basic maneuver consists of an initial evasive impulse which

moves the target away from the origin to be at a specified distance in

a specified time., For the cases presented here this time and distance
are either those established by the basic evasive maneuver presented
in Figures 4.2 and Table 4.1 or a distance of unity for all times.
Sometime after the specified distance is reached a second impulse is
executed which starts the vehicle on a return orbit to the origin
(i.e., "on station"). Upon arriving at the origin, the velocity is
nulled. The maneuver can be done in any specified amount of time
provided it is larger than that at the specified miss distance. How-
ever of interest in the present section is the behavior of the maneuver
if unconstrained by time.

The results of this investigation are presented in Figures 4.8a,
4.8b and 4.9 where the total fuel consumed and the total maneuver time
are shown for various evasion times respectively. Additional informa-
tion is given in Table 4.4. Four families of curves are shown, each

one corresponding to a local minimum in the range of total maneuver

time indicated. Curve A in Figure 4.8 represents the minimum fuel

expenditure for various evasion times for total maneuver times in the f‘-lgg
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neighborhood of fifteen radians or about two-and-a-half orbits. Curve
B gives similar information for total maneuver times in the neighbor-
hood of eight radians or one-and-a-half orbits. Curve C is for ten-
and-one-half radians or one-and-two-thirds orbits while Curve D is

for approximately six radians or one orbit,

The angles for the first impulse to carry out the maneuvers
associated with Curves A and B are about 100 and 92 degrees respective-
1y, both in the second (or fourth) quadrant. Those for Curves C and
D are in the first (or third) quadrant at about 81 and 88 degrees
respectively. In the case of Curve D, the initial impulse angle in-
creases to 90 degrees for an evasion time of 1.35 radians, at which
time the second impulse collapses to zero giving the two-impulise solu-
tion discussed earlier.

The significance of these families of local-minimum fuel consump-
tion is apparent when considering a time constraint on the overall
maneuver, For the time-unconstrained case a good strategy is to per-
form the optimum return-to-orbit maneuver followed by a phasing
maneuver which is completed over several orbits. Under these circum-
stances the total delta-V would approach that for a pure return-to-
orbit as the number of phasing orbits becomes large, However once a
time constraint is placed on the completed maneuver, the strategy
changes significantly, as shown in the next section.

It should be pointed out that additional four-impulse strategies
other than the return-to-orbit-phase sequence discussed above were
investigated. However in all attempts one of the impulse magnitudes

faded to zero with convergence of the optimization process, reducing
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the result to one of the three-impulse strategies already discussed.

Time-Constrained Maneuvers--Return-to-Orbit

As discovered earlier, the strategy for optimal evasion and
return-to-orbit consists of an evasive impuise, after which the target
coasts to apogee, fo]]pwed by a Hohman-like return-to-orbit. The time
of flight takes somewhat less than one orbit to complete, the exact
times for various evasion times given in Table (4.1). If however the
total maneuver time is constrained, the return-to-orbit maneuver is
altered and the fuel consumption is increased as shown below. Although
the results presented are for evasion times of 1 and 2 radians, the
general trends indicated are typical for all evasion times (a property
which is not true when considering a time~constrained return-on-station).

The time-constrained return-to-orbit maneuver results for
evasion times of 1 and 2 radians are presented in Fig. 4.10 and Table
4,5, Here it is seen that the fuel consumed increases rapidly as the
total maneuver time approaches the evasion time. In addition we can
note that eventually the total time of flight is so short that the
second impulse to initiate the return to orbit occurs at the specified
evasion time. Hence the maneuver is such as to just satisfy the

evasion constraint when the return impuise is initiated.

Time-Constrained Maneuvers--Return-on-Station

In the previous section it was observed that as the overall
maneuver time is reduced the fuel cost increases in a fairly smooth
manner. However for the return-on-station problem a similar smooth

curve is not found. The reason for this difference is the existence

-----
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of the local minima discussed earlier. As the total maneuver time is
reduced the fuel cost for a given evasion strategy increases.
Eventually as the time constraint is reduced further, the fuel costs
increase to a value which is greater than that for an unconstrained
tocal minimum of possibly less time, At this point the evasion
strategy changes abruptly. Such an occurrence happens more than once
as the total time for the maneuver is reduced. The actual behavior
depends upon the specified evasion time.

As an example the strategy for an evasive maneuver is tracked as
the total time allowable for the completed maneuver is reduced for a
specified evasion time of one radian. It can be seen from Tables 4,1
and 4.4 that the cost for a return-on-station for strategy "A" using
a three-impulse sequence is the same (to three decimal places) as the
cost simply to return to orbit. Hence it is clear that a large number
of phasing orbits would be required for the return-to-orbit-phasing
maneuver to be better than strategy "A". Hence for an evasion time of
one radian with the total maneuver time allotment greater than 14.5
radians (2.31 orbits) the fuel costs provided by strategy "A" is
optimal.

It should be noted that this statement is clearly not true for
different evasion times. From Figures 4.6 and 4.8 it can be seen that
fuel cost associated with the return-to-orbit phase-maneuver with two
phasing orbits approaches that of strategy "A" as the evasion time
exceeds 3 radians. For more phasing orbits the fuel cost would
become less than that for strategy "A" at some lower evasion time.

On the other hand, for an evasion time of 0.5 radians it appears that

- Y PSR SO N TP % 5 S RS R R e TR S P G SRS »
RTINS NN. O (4 RS G S R BT PCACO R RS AN S,

c 'l l'.'
SO
- tae. la »

A
wt,

.

A ol ¥ S o
"‘I‘\‘%‘.i .‘I
RARARIN

5

» e

ware e

#

.
‘v N

.
A
"._“h

~3 ey .
PR AN
'y TP %0 "o %y
PR
‘alalate ot
et ' 0
PR AN
« .
PEARNS

»
-
»
.
SN

| A




el .-;_- -_--'-.'. :.-‘:_u_::\‘_\. AT ...;'.'-_‘ '-"\"‘J‘; T L AT T AT AN T T Y
A , R, . A 2 n b B 5

63

strategy "B" is the best for all total maneuver times exceeding 7.9
radians since the return-to-orbit-only fuel costs are about the same
as strategy "B".

Returning now to the case for the evasion time equal to 1 radian,
we can examine the effect of constraining the total maneuver time.
A summary of results is given in Figure 4.11 and Table 4.6. Here we
see that several strategies come into play as the total time for
maneuver is restricted. As indicated previously, for times greater
than 14.5 radians, strategy "A" is the minimum-fuel strategy. As the
total time is reduced to values below 14.5 radians the "constrained
strategy A" uses an increased amount of fuel as shown in Figure 4.11,
Eventually the amount of fuel consumed increases above that used by
strategy "B" for much less time. Here that situation occurs for
constrained time values slightly less than 14.0 radians. At this
point the best fuel strategy is "B" until the total maneuver time is
reduced to less than 7.96 radians. Here a "constrained strategy B" is
used until its fuel consumption exceeds that used by strategy "D".
In this case this occurs for times-of-flight less than approximately
6.3 radians. Further reduction in total maneuver time causes a
"constrained strategy D" to be the optimal with respect to fuel
consumption. As might be expected the fuel penalty for very short
maneuver times is quite severe., One notes a qualitative similarity to
families of time-constrained attack maneuvers seen in the preceding
section,

An additional characteristic of these constrained maneuvers can

be observed in i3vle 4.6. For the shorter maneuver times, the
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f; return-to-station impulse (the second impulse) occurs at the specified Eiﬁi;
-s time and distance from the origin for the evasion portion of the ?iﬁg
bi maneuver. Hence it just satisfies that constraint and then returns. :Ezag
ii This explains the nice even times-of-flight noted for the three géaé
shortest total maneuver times. ijj‘
. Evasive Maneuvering Away from Line ;;_:ﬁ
The previous results describe various strategies for moving away : f;ii
;. from the nominal target position (origin) and returning-to-orbit or H?m;?
3 returning-on-station. It was assumed that the threat occurred at a
s specific time (evasion time) and at a specific point (the origin).
.Q Little consideration was given for the possibility of a closer enéounter Eﬁ
; either before or after the specified evasion time. It was observed in '%
o Reference 3 that the miss distance can be significantly less than the .‘
N distance computed at the specified evasion time. It was also shown in E;iiz
Reference 3 that since the interceptor is near the apogee of its orbit :'*?k

when it encounters the target its velocity is generally slower than

that of the target and that a good approximation of the interceptor

.
T A
'.“'l .'.v\ Mol A
't
RN }'r{-'v
A s

-

5 orbit with respect to the target orbit is a straight line which passes

- through the origin. Consequently a reasonable strategy for evasion .
g would be to move as far as possible from a given line in a specified

f time with a specified amount of fuel, :
* As in the case of the pure evasion away from the origin, the

- problem of pure evasion away from a 1ine can be solved analytically.

'5 Using arguments similar to that for moving away from the origin, we will

<4

¢

assume we have an initial impulse of unit magnitude of some angle vy.
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The object is to move to the farthest distance from a line passing
through the origin at some angle o with respect to the x axis, (see
Fig. 2.1). Assuming o less than 90 degrees, an expression for an
outward pointing unit vector perpendicular to the line is given by

f=-sinai+cosaj (4.6)
The object is to maximize the distance perpendicular to the line given
by

d=n-F (4.7)

- where 7 = x 1 + y 3
and x and y are given by the CW solution (eq. 2.30) with the initial

position at the origin. Equation (4.7) becomes

d = - [cosy (4sint - 31) + 2siny (1 - cost)] sina

Ay

: + [-2cosy (1 - cost) + siny sint] cosa (4.8) ::§;?
:- 5':-':[-(\'
. . . RS
N where t = evasion time sl
. A

The initial impulse angle which maximizes this distance is given by E 5

Y -

& el
? - _ 2 (1 - cost) sine - sint cosa P
; Tan v = 17Ty = %) sina * 2 (1 - cost) cosa (4.9) i
el

. This angle is shown in Figure 4.12 for various evasion times. The

corresponding distances are displayed in Figure 4.13. Also shown for

o e Y l"l

comparison purposes are the corresponding two curves for pure evasion
from the origin calculated previously.

For Tow evasion times the distances from the origin and from the
various lines are nearly equal although the initial impulse angle is

significantly different, increasing in value as the line angle with
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the x axis increases. As the warning time increases, the initial im-

pulse required for the optimal evasion also increases to angles which

AL PN

are 20 to 30 degrees more than that required for evasion from the

A origin.

t’ Another feature which is significantly different from that
associated with evasion from the origin is that the maximum distance

obtainable does not monotonically increase with evasion time. Hence .

the strategy for evasion from a line can include a waiting period if
the evasion time is greater than that required to reach the maximum 5222

distance from the line. Consequently in the subsequent sections we

are interested only in evasion times less than or equal to those which
provide the maximum miss. From Figure 4,13 these times are given by

" 3.1, 2.8, 2.6, 2.3 and 2.1 radians for lines at angles 0, 5, 10, 15

st
[l
PR
Taw .
[
$ LTt
AT
= s
MUAA]
LI

and 20 degrees respectively.

. Lyt
{I A summary of the results for pure evasive maneuvers from a line Eﬁiﬁ
are presented in Table 4.7, &:}
N . ::*\."
5; Evasion from Line and Return-to-Orbit Fitg
; The maneuver discussed in this section is analogous to the g:;j
. evasion from the origin and return to orbit discussed previously. As . i
in that case the proper maneuver is to make the evasive impulse, remain Q{ﬂ

L
¢
t%f‘;’
Lo

in the evasion orbit until apogee is reached, and then perform a

Hohman-1ike return. Although the complete maneuver takes just under o

; one orbit to complete, there is some flexibility in that the vehicle ‘Qj
, (% tl

5 could remain in the evasion orbit until the second (or more) apogee, f;i

pass before initiating the Hohman-1ike return. Consequently some
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multiple of 2 can be added to the total maneuver time without SN

changing the fuel cost.

Results for a Tine at 5 degrees with respect to the x axis are
given in Figures 4,14, 4.15a, and 4.15b and in Table 4.8. In Figure
4.14 we can note that the initial impulse angle for evasion from a
line and return-to-orbit approaches that for pure evasion from a line
at larger evasion times and in fact becomes the same in this case when
the evasion time is 2.8 radians. At the same point we can note from
Figure 4.15a that the total delta-V approaches the value of 2. For
this value of evasion time (2.8 radians) the pure-evasion-orbit
coincides with the evasion-and-return-orbit so that the second impulse
decreases to zero and the vehicle returns to the original orbit with
the same velocity as it left. Hence the nulling impulse equals the
original impuise for a total value of 2. We can also note that the
initial impulse is along the negative x axis (180°).

Figure 4,16 shows the total maneuver time as it depends on
evasion time. A complete maneuver can always be carried out in less
than one orbit. However as indicated previously any multiple of 2r
can be added to the total maneuver time without changing the initial
angle of impulse or the total fuel consumption.

Several attempts were made to search for minimum-fuel solutfons
with four impulses. However all four impulse solutions reduced to

three when coupled with the optimization algorithm.
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Evasion from Line and Return-on-Station

The strategies for returning to the original position in orbit
for the case of evasion from a line are analogous to those considered
for evasion from the origin. They include: 1) a two-impulse maneuver
sequence in which the initial impulse injects the vehicle into an
evasion orbit which coincides with a return orbit, 2) a four (or five)
impulse maneuver which consists of a return-to-orbit maneuver dis-
cussed in the previous section, followed by a phasing maneuver taking
place over one or more orbits, and 3) a three-impulse maneuver
consisting of an evasive impulse, an intercept or return-to-station
impulse, and a velocity-nulling impulse to complete the maneuver.

Each of these is discussed below.

As observed previously, the simple two-impulse return-on-station
is possible only if the first impulse is along the y axis (in the
radial direction). Under these circumstances the evasion orbit appears
as an ellipse which is tangent to the y axis and whose major axis lies
along the x axis. If the impulse is outward, the ellipse lies on the
positive x axis. Consequently the vehicle in the evasion orbit will
return to the origin in one orbit period (or in any number of orbit
periods) at which time a velocity-nulling impulse is required which is
equal in magnitude and opposite in direction to the initial evasive
impulse.

For the purposes of comparison it is necessary to constrain the
motion so that the vehicle is at least the specified distance from the
line for the specified evasion times as shown in Figure 4,13 and

Table 4.7, or at a distance of unity. However, because of the relation
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h of the evasion-orbit ellipse and the straight line it is clear that e,

k.
there is a point (actually two points) on the evasion orbit which is N

. the furthest from the line. Consequently for any evasion times greater o

than the time it takes to get to this point, the best strategy is to
wait, deferring action until the evasion time equals the time it takes
to reach that point. Two calculations must be made, the time it takes
to get to the farthest distance from a line, and the fuel necessary
to equal the distances specified in Figure 4.13 up to and including
that time.

A general expression for the fuel required to meet the specifi-

0 cations of Figure 4,13 for the special case of a 90 degree initial

impulse can be obtained from eq. (4.8) by setting y = 90° and re-

Y arranging. The resulting delta-V requirement is given by

'. ' - = - k3 L3

: Yo = AV Rperp/[2 (cost - 1) sina + sint cosa] (4.10)
' where R = desired distance from line

perp
T

evasion time (radians)

Equation (4.10) is valid for evasion times up to and including that

: required for reaching the maximum distance from the line. This time

: is determined by differentiating eq. (4.8) with respect to t and

- setting the result equal to zero. The result is expressed in terms of
the following equation for evasion time for maximum distance from a
Tine at angle a for the special case of a 90° first impulse:

1

E Tan t = ?Cot a (4.11)

’

» The results of these calculations are shown in Figures 4.17a

: and 4.17b and Table 4.9 for evasion times up to those determined by

-
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N eq. (4.11). For evasion times beyond this value the fuel consumption
is constant because the vehicle waits. Although not very fuel-
efficient, this strategy is easy to implement. Once the relative
orbit line angle is known, one thrusts immediately at 90 degrees if

X the evasion time is less than the maximum distance time for that line o

angle. If the warning time is greater than that value wait, and B
thrust at 90 degrees when the appropriate evasion time is left. e

By adding a phasing maneuver to the return-to-orbit strategy, the :j:i{

vehicle can be made to return-on-station. Details of this phasing Qﬁl.f
operation were discussed previously where the extra fuel cost was
- found to be related to eq. (4.5). If that equation is used with the

return-to-orbit results just developed for evasion from a line, the

total fuel and total time requirements for a return-on-station maneuver
~ can be determined. These results are displayed in Figures 4.18a,
4.18b and 4.19 and in Table 4.10.
- The results here are very similar in nature to the results ob-
. served for the evasion-from-the-origin cases discussed previously.
Again the extra fuel used for phasing is reduced for each additional
3 phasing orbit. In the 1imit as the number of phasing orbits grows
large, the total fuel to return on-station appraoches that for return-
to-orbit. The price, however, is paid in time. The cost in time is
shown for the first two phasing orbits in Figure 4.,19.
The reader should be reminded that the return-to-orbit final
‘E impulse can be merged with the initial phasing impulse to result in a
. four-impulse maneuver sequence. On the other hand these impulses may

be kept separate allowing the vehicle to remain in orbit but off-station
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Al
for any desired amount of time before initiating the phasing impulse R
Without any additional cost in fuel. The resulting five-impulse E%IEE}'
..'_x‘:\*:
maneuver is the most flexible of all since the return-on-station can iﬁti};
,‘-}\ ’ g
occur at any specified time as long as it is greater than that required N

for one phasing orbit with no wait as shown in Figure 4.19.

The final strategy to be discussed is the three-impulse evasion-

from-a~line and return-on-station. There are several locally optimum
solutions similar in nature to those observed for the case of evasion N

: from the origin and return-on-station. Two of these are shown in

Figures 4.20 and 4.21. Additional details concerning these solutions j;ﬁgfg‘
are given in Table 4.11.

If we examine Figure 4.20 with concern for fuel consumption only
we can see that the return-to-orbit with a large number of phasing
orbits is the best strategy with fuel consumption approaching that for
the return-to-orbit case. For evasion times less than 1.2 radians,
the three-impulse maneuver associated with strategy "A" uses tess fuel
than the return-to-orbit with a two-phasing-orbit strategy. In all
cases strategy "A" uses less fuel than a return-to-orbit with one

phasing orbit maneuver. The factor which ultimately lets one pick a

particular strategy is the time allotted for the maneuver. The three-
impulse strategy "A" takes about the same time as the return-to-orbit-
with-one-phasing-orbit procedure for long evasive times (2.5 radians)

but take significantly less time for short evasive times (0.5 radians).

On the other hand the three-impulse strategy "B" requires significantly

K
»
\
W
»
i
N
)

)
)

less time than both of the above maneuvers at the price of using

considerably more fuel. However at low evasion times strategy "B"
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uses less than the one orbit phasing maneuver, hence it has both a N

time and fuel advantage.

An interesting characteristic of maneuver "B" is that the inter-

cept impulse to return the vehicle on-station occurs at the specified

NN AAAANDER 29

KT
evasion time indicating that this strategy is most likely the fastest e
) :.}:“b “
three-impulse optimal maneuver possible. PARORS
S
II Time-Constrained Maneuvers--Return-to-Orbit T

Although some discussion concerning time was included in the

previous evasion-from-a-line results, the main purpose was to present
ii the time-open strategies. In this section the return-to-orbit maneuver ——
N 2t

is examined subject to a constraint on the overall maneuver time, For

the purposes of discussion only one case will be considered, evasion :;uﬁj

from a line angled at 5 degrees with respect to the x axis with an
evasion time of 1 radian., We will examine the behavior of the minimum-

fuel solutions as the maneuver time is reduced below the values indi-

h‘ cated in Figure 4.19.
b: The results are presented in Figure 4.22 and in Table 4.12. As
E; expected, the fuel cost increases as the total maneuver time is reduced. \
- The best maneuver consists of a three impulse sequence until an . ;f;éj
: evasion time of slightly less than 3.0 radians is encountered. At this %;iééf
X point the middle impulse fades out to zero and a two-impulse maneuver- : ;i“%i
sequence results. In addition we can note from Figure 4,23 that, as .iiéf
- the constraint on the maneuver time is reduced, the initial impulse §§;€$
g angle also is reduced until the two-impulse solution is reached with “:-.’%
§ an initial impulse angle of 90 degrees. At this point a further E;i:
: . ;'.'\ R T -_\;\.-.@ R N ) G I V3 X TSy v.'. A T B R o T A SN A f:‘:.:::l:::
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reduction in total maneuver time again requires a three-impulse
maneuver sequence to minimize the fuel consumption. For these tra-
Jectories, however, an additional constraint enters into the problem
as indicated by the time-of-flight for the first orbit (see Table
4,12), Here we see the first orbit just satisfies the distance-from-
the-line condition when the impulse to return to orbit occurs. The
effect of this constraint is to make the initial impulse angle increase
as the time is reduced further. The curves for a continued two-impulse
strategy as time is reduced are shown as dashed lines in Figures 4.22

and 4,23 for comparison purposes.

Time-Constrained Maneuvers--Return-on-Station

The final strategy to be investigated is that which includes an
evasive maneuver from a line and a return-on-station with the tota)
maneuver time constrained. The problem examined in the previous section
is continued here. The results for an evasion time of 1 radian are
presented in Figures 4.24 and 4.25 and in Tables 4.13 and 4.14,

The longer maneuver times favor the return-to-orbit-phase-maneuver
strategy with more phasing orbits with increasing time. Beyond 4 or 5
phasing orbits the decrease in fuel is small. For example the total
fuel used for a 4-phasing-orbit procedure is 2.108 while for 5 phasing
orbits it is 2.042, an improvement of about 3 percent. The data of
Table 4.14 are obtained from the constrained return-to-orbit results
of Table 4.12 and the use of eq. (4.5).

The fuel costs for the various maneuvers are shown in Figure
4.24 from which a constrained-time strategy can be developed. For

large maneuver times greater than about 30.0 radians one uses a
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E return-to-orbit with a 4-phase-orbit procedure. For times between

. 24.4 and 30.0 radians one uses an unconstrained 3-phase-orbit maneuver, Eijgij
E switching to the constrained return-to-orbit-3-phase maneuver as times §§S§E7
i decrease to 23.6 radians. For times between 8.5 and 24.4 an un- ?ﬂ{ﬁu
. constrained three~impulse maneuver "A" is desired, with the "constrained

: maneuver A" used for times between 6.3 and 8.5 radians. Finally the

B "constrained strategy B" should be used for short warning times less

\ than 6.3 radians. The corresponding initial impulse angles are shown

- in Figure 4.25.

- Summary & ==
: The strategies for minimum-fuel evasion-from-the-origin and gfﬁéﬁ
i evasion-from-a~line have been investigated for the cases of pure Eig;é
: evasion, evasion and return-to-orbit and evasion and return-on-station. PR
N The pure evasion results consist of initial impulse angles which E? -

; maximize the appropriate distance for a given amount of fuel. The E{

results are independent of orbit altitude. For the case of evasion-
from-a-point, the greater the warning time, the greater the distance ;

achievable (at least within the warning time considered). For the

[ A N

case of evasion-from-a-line, however, there is an evasion time which
gives the maximum distance. MWarning times greater than this value

are not needed. .

PR M)

The return-to-orbit strategies are basically the same for the
evasion-from-the-origin or evasion-from-a-line scenarios. They

consist of the evasive maneuver, a coast out to apogee and a Hohman-

PPN RSN

like return to orbit. The feature here is the flexibility of the

'

-

-
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maneuver, allowing the return-to-orbit after one or more orbit

periods.
Return-on-station strategies generally can be considered to
be one of two forms, a return-to-orbit maneuver followed by a phasing
procedure which can take one or more orbits, or a three-impulse
maneuver which consists of an evasive impulse followed by an intercept
impulse and concluded by a velocity-nulling impulse. In general for
shorter evasive times the three-impulse maneuver is most efficient.
Finally time-constrained maneuvers were considered with the
general result indicating that fuel costs increase as the total
maneuver time allowed is reduced. Additionally, as the total maneuver
time is reduced, discontinuities in strategy are encountered to keep

the fuel costs minimal.
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. TABLE 4.1 2
o HON
A Pure Evasion from Origin e
3 Camt
W :v- -l"

L
A
L

_‘
R
ot

Evasion Delta-V Time-
Time Angle Distance AV of-Flight T

0.5 104.3 0.542 1
1.0 118.3 1.338 1
1.5 131.3 2.628 1.0 - -
: 2.0 142.2 4,560 1
- 2.5 151.0 7.102 1
; 3.0 158.1 10.038 1

Evasjon from Origin and Return to Orbit

o 0.5 92.5 0.542 1.004 1.508 4.800

w 1.0 101.0 1,338 1.027 1.568 5.084
.5 123 2.628  1.046 1.672 5.399
2.0 124.3 4.560  1.046 1.778 5.651
2.5 135.7 7102 1.035 1.860 5.830
3.0 145.9 10033 1.023 1.917 5.955

)

\

1RO
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TABLE 4.2
. Two-Impulse Evasion from Origin and Return-on-Station
Evasion Mjnimum

Time (rad) Distance av, AViotal

0.5 0.542 1.001 2.002

1.0 1.338 1.073 2.146

1.5 2.628 1.246 2.492

2.0 4,560 1.533 3.066

2.5 7.102 1.945 3.890

3.0 16.338 2.521 : 5.042
R
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TABLE 4.4

Three-Impulse Return-on-Station Parameters

Evasion Angle of Delta-V Time of Flight
Time Initial Impulse AV av Orbit T Orbit 2  Total
1 total
Maneuver A
0.25 100.63 1.000 1.526 5.085 9.387 14.464
0.5 100.64 1.000 1.527 5.084 9,382 14.466
1.0 100.72 1.028 1.568 5.074 9.427 14,501
1.5 100.95 1.124 1.717 5.049 9.543 14.589
2.0 101.63 1.279 1.969 4,989 9.802 14.79N
2.5 104.98 1.411 2.289 4,918 10.492 15,410
3.0 117.54 1.306 2.588 5.169 11.461 16.630
Maneuver B
0.25 91.07 1.000 1.501 4,752 3.136 7.888
0.5 91.11 1.006 1.509 4,745 3.154 7.900
1.0 91.40 1.066 1.601 4,706 3.257 7.963
1.5 92.01 1.220 1.840 4,635 3.460 8.095
2.0 93.81 1.447 2.222 4,531 3.815 8.346
2.5 -97.14 1.638 2.715 4,447 4,475 8.922
3.0 107.23 1.560 3.208 4,699 5.247 9,946
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' TABLE 4.4 (cont.) .
T N
= Evasion  Angle of Delta-V Time of Flight e
D\ Time Initial Impulse &V] Avtota1 Orbit 1 Orbit 2 Total “.’tl}l;
Maneuver C :
> 0.25 80.78 1.002 1.523  7.557  3.091 10.648 et
” 0.5 80.82 1.018 1.546  7.564  3.073 10.637 oo
sz 1.0 80.93 1.129 1.715  7.590  3.002 10.592 <
- 1.5 81.10 1.390 2.116  7.624  2.915 10.539
L 2.0 81.26 1.835 2.802  7.656  2.827 10.484
" 2.5 81.43 2.535 3.886  7.688  2.743 10.43] A
Maneuver O e
0.25 68.40 1.007 1.827 0.912 4.616  5.528 %:55
0.5 72.68 1.031 1.879  1.034 4,615  5.649 s
1.0 82.91 1.116 2,114 1.374 4,627  6.001 e
1.3 88.84 1.175  2.326  1.596 - 4.641  6.237 .Efgﬁ
z 1.35 89.81 1.184  2.365 1.633 4.643  6.276 N
= 1.40 90.00 1.202 2,404 - 6.283  6.283 sy
: 2.0 90.00 1.533  3.066 -  6.283  6.283 e
R 2.5 90.00 1.945  3.890 - 6.283  6.283 i
° 3.0 90.00 2.521 5.042 -  6.283  6.283 o
Maneuver E
N 1.5 100.43 1.129 1,720 11.330 15,767 27.097
3 2.0 100.58 1.297 1.981 11.298 15.884 27,182
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1 TABLE 4.5 s
: v,
\ Time-Constrained Evasion and Return-to-Orbit ;&r3§£
Evasion Time = 1 Radian |
Constraint  1ge of Delta-V Time of Flight
. Time Impulse AV] Avtotal Orbit 1 Orpit 2 Total
& 6.000 101.04 1.027 1,568 1.943 3.142 5.085
s 5.000 99.79 1.031- 1,569 1.948 3.052 5.000
- 4,500 93.20 1.057 1.609 1.910 2.590 4,500
: 4,000 87.50 1.087 1.690 1.798 2.202 4,000
- 3.500 82.24 1.120 1.806 1.647 1.853 3.500
3.000 77.12 1.158 1,956 1.474 1.526 3.000
2.500 71.98 1.201 2.140 1.291 1.209 2.500
2.000 66.92 1.248 2.360 1.108 0.892 2.000
1.500 61.78 1.299 2.598 1.028 0.472 1.500
Evasion Time = 2 Radians
6.000 124.33 1.046 1.778 2.510 3.142 5.651
5.000 117.20 1.172 1.898 2.623 2.377 5.000
' ' 4,000 94,93 1.409 2.366 2.343 1.657 4,000
3.000 85.54 1.672 3.162 2.000 1.000 3.000
0 R A B e e e R




TABLE 4.6

Fuel Consumption in the Presence of Time Constraints In;;ﬁ

B

i

Angle of . ;.::-‘1:‘:

Time Initial Delta-V Time-of-Flight o

Constraint Strategy Impulse AV] av Orbit 1 Orbit 2 Total .

total

14.501 A 100.72 1.028 1.568 5.074 9.427 14.501 ' o
14,000 A 100.38 1.029 1.589 5.220 8.780 14.00 oy
13.000 A 99.24 1.033 1.829 5.477 7.523 13.00
13.000 B 91.40 1.066 1.601 4.706 3.257 7.963

7.000 B 89.79 1.074 1.742 5.173 1.827 7.000

6.500 B 89.77 1.074 1.989 5.334 1.166 6.500

6.300 B 89.98 1.073 2.134 5.356. 0.944 6.300

6.300 D 82.88 1.112 2.114 1.374 4,627 6.001

6.000 D 82.88 1.112 2.114 1.374 4,626 6.000

5.000 D 70.84 1.211 2.289 1.239 3.761 5.000

4.300 D 64.08 1,275 2.523 1.001 3.299 4.300

4.000 D 62.02 1.296 2.646 1.000 3.000 4.000

3.000 D 55.03 1.369 3.267 1.000 2.000 3.000

2.000 D 47.52 1.446 4.846 1.000 1.000 2.000




RN A S A AR A ol el S 4 . AL ey 84 M i -t i B e Sk Ca i e Amb it e o g Mmoot BB n6 oo

St

83

TABLE 4.7

Pure Evasion from Line

Evasion a=0 @ =5 a = 10
Time Angle Distance Angle Distance Angle Distance

0.5 117.05 0.538 121.56 0.535 136.59 0.531
1.0 137.53 1.246 141,34 1.214 145,38 1.177
1.5 151.78 2.109 155.28 1.989 159.26 1.862
2.0 162.20 2.975 165,86 2.697 170.37 2.413
2.5 170.57 3.652 174.87 3.156 180.78 2.661
3.0 177.97 3.982 183.65 3.236 192.68 2.516

0.5 130.76 0.528 135.48 0.523
1.0 149,67 1.138 154.29 1.098
1.5 163.82 1.732 169.14 1.601
2.0 176.09 2,129 183.53 1.857
2.5 189.32 2,187 202.23 1.770
3.0 208.28 1.886 235.17 1.497

;. - =147 \- 7, x- - r‘*r -.,rr. {_‘ -. -’._-‘._.-'\"."._f‘.l'\ S \ LA ;:‘ -"'"', .;_ .:‘.-r‘ .".‘-\ -, .'\' _‘." Y “{ ( "o X _.‘ "o ,)*‘i ’f '7 ", j’ X ,‘, §
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TABLE 4.8

r
el

Evasion from Line and Return to Orbit

a = 5°

Evasion Perpendicular Delta-V Time of Flight
Time . Angle Distance AV] AV Orbit 1  Total

total

0.5 107.74 0.535 1.030 1.612 2.140 5.282
1.0 125.00 1.214 1.042 1.777 2,521 5.663
1.5 142.23 1.989 1.026 1.897 2.772 5.914

—
SN

2.0 157.70 2,697 1.010 1.964 2.939 6.031
2.5 171.81 3.156 1.001 1.996 3.163 6.211

D M e 30 N 4
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TABLE 4.9 VIR
s Two Impulse Evasion from Line and Return-on-Station
I
b
Minimum Delta-V
qusion Perpgndicular
Time Distance AV] Avtotal
a = (°
0.5 0.538 1.122 2.244
1.0 1.245 1.480 2.960
1.5 2.109 2.114 4,228
1.571 2.236 2.236 4,472
o = §° K .;_
NN
.' ‘—. -!r
0.5 0.535 1.172 2.344 I
1.0 1.214 1.602 3.204 SO
1.398 1.830 2.186 4,372 .é,- -
e
a = 10° \}.\i{t
RPN
0.5 0.531 1.236 2.472 Lt
1.0 1.177 1.759 3.518 g4
1.232 1.500 2.152 4,304 N
e
RN
- ° o0
a =15 ORI
AR,
0.5 0.528 1.321 2.642
1.0 1.138 1.980 3.960
1.079 1.238 2.141 4,282
a = 20°
0.5 0.523 1.426 2.852
0.942 1.031 2.156 4,312
e
t:i:.;g,““
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TABLE

4.1

Evasion from Line and Return-on-Station Parameters

Evasion Angle of Delta-v Time of Flight
Time Initial Impulse AV av Orbit T Orbit 2 Total
1 total
Maneuver A a =
0.5 91.94 1.150 1.734 4,642 3.440 8.082
1.0 94,23 1.400 2.295 4,488 4,013 8.501
1.5 105.08 1.562 3.074 4,626 5.137 9.764
2.0 130.24 1.230 3.690 5.413 5.823 11.236
2.5 162.89 1.022 3.966 6.051 6.228 12.174
Maneuver B a =
0.5 90.00 1.172 2.344 6.282 - 6.282
1.0 95.66 1.437 3.194 1.000 5.296 6.296
1.5 125.48 1.152 4,228 1.500 5.101 6.601
2.0 154.14 1.021 5,095 2.000 4,996 6.996
2.5 184.58 1.014 5,677 2.500 4,901 7.401
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. TABLE 4.12 v

Effect of Maneuver Time Constraints on Evasion from N

v 7s 1
PF W S R N §

u: Line and Return-to-Orbit Maneuver ;ﬁr&

a = 5° T=1.0 d(t) = 1.214 R

Three Impulse

Constraint A?E?éi;%f Delta-V . Time-of-F1ight S
= Time Impulse AV] Avtota] x Final Orbit 1 Orbit 2
3 5.663* 125.00 1.082  1.777  12.506  2.521  3.142
- 5.000 10,01 1171 1.910  9.700 2.678  2.322
= 4.500 102.10  1.291  2.130  8.199  2.582  1.918
i 4.000 96,01  1.422 2,432 7.128  2.423 1,577
% 3.500 91.13  1.563  2.830  6.407 2.244  1.256
2 3.000 87.31  1.702  3.351 6.056  2.065  0.935 i
% 2.800 101.89  1.295  3.486 3782 1.000  1.800 S
2.500 103.80  1.261  3.850 3.080  1.000  1.500 -
3 2.000 108.64 1.188 4.830 2,114  1.000  1.000 R
. 1.500 120.45 1.070  7.498  1.184  1.000  0.500 L
2 RO
- Two Impulse .:-;
¥ 2.8 85.07  1.801  3.602 5.878  2.800 . et
: 2.5 80.57  2.048  4.096 5.564  2.500 - S
2.0 72,20  2.809  5.617 5,545 2,000 - [:fﬁi

f
FAE A
b
v %

*unconstrained time-of-flight
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TABLE 4.13

and Return-on-Station Maneuver

Effect of Maneuver Time Constraint on Evasion-from-Line

Tt =1.0 d(t) = 1.214
Constraint p?ﬁ%t%;%f Delta-V Time-of-Flight

Time Impulse AV] Avtota] Orbit 1 Orbit 2 Total
8.501* A 94,23 1.470 2.295 4.488 4,013 8.501
8.000 A 92,06 1.533 2.319 4.646 3.353 8.000
7.500 A 90.67 1,578 2.409 4,888 2.612 7.500
7.000 A 89.94 1.603 2.604 5.144 1.855 7.000
6.500 A 89.84 1.606 2.976 5.316 1.184 6.500
6.000 A 86.82 1.723 3.429 2.255 3.745 6.000
6.296* B 95.66 1.431 3.194 1.000 5.296 6.296
6.000 B 103.53 1.266 3.318 1.000 5.000 6.000
5.000 B 118.37 1.086 3.862 1.000 4,000 5.000
4.000 B 134.68 1,007 4.429 1.000 3.000 4.000
3.000 B 157.41 1,041 4.950 1.000 2.000 3.000
2.000 B 166.79 1,107 5.744 1.000 1.000 2.000

...............

------

*unconstrained time-of-flight
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TABLE 4.14

Effect of Maneuver Time Constraints on Evasion-from-

Line, Return-to-Orbit and Phasing Maneuver

a = 5° T =1.0

d(t) = 1.214

Angle of

Constraint Phasing Initial
Time Orbit Impulse Avtota]
30.796* 4 125.00 2.108
30.133 4 110.01 2.167
29.633 4 102.10 2.347
24.512* 3 125.00 2.219
23.850 3 110.01 2.253
23.350 3 102.10 2.420
18.229* 2 125.00 2.440
17.566 2 110.01 2.425
17.066 2 102.10 2,565
11.946 1 125.00 3.104
11.283 1 110.01 2.939
10.783 1 102.10 3.000

*unconstrained time-nf-flight
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100 mile circular orbit

Delta-V1 = 1,0

BIEAME A il A SO0 st Sub i e o e G al i i S S Ay A A

EVASION TIME (RADIANS)
Distance from Origin

FIGURE 4.2

. ' - + - e L T e o B Y .
-l"a_:.-‘.-".r" A .-.-' ).-"'..- Al T

| ] 1 .
- ] =] b4 o~ (=]
(*d9s / *13 / °33 0001) e——o
(Teuotsuauwtp-uou)
JONVLSIA

A




IR IR e S e e e S I A KR I AL AN AN S SMAC eI Sk s e i S e e Yl hettin Sade e ahe 2y Din A Siaiaa-Stes pie e |
l...( ~.~y‘
AN O
—
BESA Y
93
V.
Fe)
o
¥
o =
= ©
Bl ] !
oL+ o
.- +
= !
oo £
et =
= 3
O 4t I
IS o
U= QO =2
o
» :m 'v
S c
N 5+
N~ —
> 0 - > (o]
[V (o] ] eyt
g+ e~ «© -t~ b
—®wn = + ©
Y ' — ~ =
= © L v =
o @ % a =
J - ) — < &
j=5 = [ ] e O
o Q- -~ ] o [}
15 <€
86 @ U ® U
cwno — s
- i~
n o - 22
350 = €
Q)> - (]
ot 3 = =
- =
=0 & =z =
g S (=) =3
= - 9
[eplle] vy &
[T <
o > >
>0 ) !
> 60 ©
1 Q= - - At
M e S —
om0 [N
— a
Q&=
awnd ]
%)
" .
<
i
. © w
< -4
> jom]
' &)
o o]
. o -
—
N
=]
1 .
B 2d °
~ —

3% _y173g / A-vLTHA




g

Ad 2

FILRLEETT VLV T WLUR WIS

T

P SR 4
.

11Q10-01-Uuan1ay
pue uoirseAj J1o03J sjuawairnbay A-eITS9d QS v AUNOIA

(SNVIQVY) FWIL NOISVAL

94

W NN

™
—
=y

UOTSBAD

aang

Tr-eateg

0°T = 9dueistq

RARARAL OGO RN - SR ) Ry §

K I D R | s 8 4 Pttt Tt
. 8
» o RO

(LR ]

S red
A

A-V11da

. <

S AWL, .

7]




o4& %

.
Lo

IO

-
.

‘.
»

NI A A LA o NG

95
—
L ]
O W s

(SNVIAVY) AWIL YIANIANVKW

I T R S A N, i B

TV.LOL

TR T A T
L P \P-’ T

EVASION TIME (RADIANS)

Total Maneuver Time to Evade from Origin and
Return-to-Orbit

FIGURE 4.4

Pl DT

X

. o -

a

. );.""'
A f
a
‘.

¥

(ol 2% 3§
r:‘"‘
l.:"

{l ,l

)
s

cere T, VWM
"’:‘. )




Po et BnA date St 2o hd el ST A 2 Wi T S o A A A AR A S A i DR A AL A S MRS SN S0 I S 2 A Rl Rl S A

s

[
[
¥, 96
)'
&,
-
=
(o)
]
— s
> >
(lc [S3)
- o
; 0
i
= 3
o
=
—t
[}
N -— N @]
=] =z
5 o =
n Z 5
o S Pt Uy
2 e 2 wb
0
B0 N é e
[F] (- [==]
e B | O «©
o o g 55
o E —t -
ol = -
[ IS 3 0
z ot
[ (@] [ =]
— QO bt [~
=T I~ w =3
s 3 < >
< O - 't O
-5 = =
>'- =] - -t - T
L= 8%
— ¥
Qo O <
a wn
o
<
23]
[-4
o
(&)
=
<5
L | ] | ] o
v < 1) ~ — o
=)
3N .yr130 / A-vLTdQ
e T S NI AT T Lt T Do I B




97

UOT3IB3IS-UO-UINIY pue
uoiseag oasyndw]-oM] X03J sjuowarrnbay pA-e3aTeg qS° ¢y IYNOIA

(SNvIavy) aWILl NOISVAL

z 1 0
| ] 0
Tr-eat10q
41
o
&
A 7
%
TBI0L, _ootoq <
X
0°T = 9d3ueisI|g
v




98

.... L IR A RAR .,N-.-n)..o-.o‘.. 't

Yo, P AN A
" Yt .\ ¢ \..-\. O / A e &.ﬁ.ﬂﬂ-.. \.-K
A . K - v M
L.—\.-‘ IRERENERR RN ca AN g " \usuWNP.a-h .-..-\hltt
. . .

UOT3EB1$-UO-UINISY puEe
utdtaQ wodj uotrseag 10J sjuduwaxtnbay 1ong 9y FYNOIA

(SNVIaVvy) FWIL NOISVAd

sLe.eLm4c AN & 0 v ¢

11q10-03 -uInlay

|
o~
3%, _y113q / A-viT3d

si1qi0 Burseyd g
uoI3lels-uo-uiniay

1tqio Jurseyd I
UOTIEJS-UO-ULN]IY

v /MR Ly g LAN%TEE . . ., . .ER T el e 'SR - L ah e e R a, RT

TN

-
SK

L
o

o

329

- ‘5:

ATV T

n

O
B

RS

-

. -

2w

LV R

> e

“wate
»

PO Y -;‘-."-



el o

A e S e

U0T31B1S-UO~UIN}SY PpUE
utrdt1Q woaj uotseay J0J sjuswartnbay 1ong q9'¢y IWNOIA

(SNvIavyd) HWIL NOISVAL

31q10-03-UINlay
s31qlo duriseyqd ¢
UOTIB]S=-UO-UINIIY

99

11qro 3urseyd T
UotTlels.-uo-uanliay

A-vV1T30a

<

e

P
RGeS



uor31els-uo-uinlay pue urdtiQ
wodj UOTSeAd 10J sjuawdiinbay awrl 19ANaUBK

Ly 2YNOId

(SNVIUVY) FAWIL NOISVAd

11Qi0-01-UIN1JY

100

31ql0 Burseyd 1
U0T3e3IS-UO-UINIIY

AL

vt

Ay

A\l g

——

s3t1qi0 Jurseyd ¢
UOTIEIS-UO-UINI Y

(SNVIAVY) dWIL ¥IANINVW TVIOL

Mo Die AW e don o

.—' -

WEURTWRTN

wywwY

. g




N gt e

.

L gl

; g A ar et

e

efat At AT

uoilldunsuo) [ang uotlelg-uo-uirniady uadp oury

eg8° v JYNOI4d

(SNVIQVY) dWIL NOISVAH

- ——— —  S———

11ql0-03-UIN3ay

101

19Aanauew asyndut 7

, 1aAnauew asyndut ¢

UOT31B]1S~-UO~-UIN] Y

L e . B « : 4 \_i_4J. U . 0,

|
[aV]
3%, _yi1730 / A-VITdd




LAl e s Ak ol SR sl i ataes 4

Mas euara an

RO NME AL Sl A A

A Sl Sl i

102

uotidunsuc) 1ang uotiejs-uo-uiniay uadg SWIL qg°p TYNOIA

(SNVIQVY) dWIL NOISVAZ

Iaanasueuw ssyndur 7

Isanagueuw ssyndut ¢

UoTle]lS-U0-UInN}ay \

A-Vv113dd



r, . ...-- R 3 \f\ p ¥ I) W g
\'.v,. .-. .-4 ,.- ¢ \--»—c\s »-.f ff N <vn. " nl'ly _ }\l ..u
NN AR T .}\... 3 P

. SN OO OGRS ........ SR IR 2R CArs d b
- AT\ al AT ATRS AR A Y SRR RN PPN LALAAL .-f!..k\
A
. e
r. nA..‘
o
L «

5

“I

SSWT] JI9AdnuUBK UOTIEIS-uO-uUINI3Y uado SUTL 6°py FUNOIA

(SNVIAVY) dWILl NOISVAL T
¢ z 1 0 N7
| | | 0 W

"

-

"

Sy

\

— - — -
- Smpm— l‘\l\
— e S——
e s . —— T ——— — ————— ——— ———— = —————— - W  ———— — ———

(SNVIQVY) IWIL ¥IANINVW TVIOL

\.\.\‘l v 15t >
loAnguew ssyndut 7 7

1aanaguew asyndur ¢

-
=)

UorTlelsS-UO-UIN]IIY

~

w,
v .

LA
S e

RICYR SRR

e

et , \‘.-. . 4 \.\..\xtg...”.; AR ..n ...‘ ' R .... ....,, S ; ..A......... . ...%;\ KA IR ..- “» % v v cv s W v v



LA s SR S AR A A e e e St B A AR A A s A

104

(SNVIAQVY Z) A-VLT4d

O w <t (Lp]
o = o o
I | | |
(NVIOVY 1) A-VL1T13d
(o= wn
~ —_

-11.0

|

=
o
op|
-~
[
1=
=3
0N
=
(]
| &)
—{
~ [}
- U =
- 48
e
— =
o] (o]
<
. o4 -
. = o
2 —
. [43] [
R < = b~
. — [}
- wn = 0
- c =]
- « =4 (o]
i) m &)
o >
. o] = Q
- e [e3] 15
- z vt
£ ~N ~ <
- S
- Yt
e = - @)
. b=t =
s = n
. o o
. © = v
= o
- g
- — -d 3 U
-»‘ m
. "
- 1)) o
—
- ot .
. = <
- = 53]
. o -y — [~
. ot -
l.' m O
- o —t
. > o
[44]
Y -
- L ] -
>

v o~ -

3

vy

My _vi130 / A-viT3d

[+
e
.
0
)]
-
.
o o T e e G B L P LG L o S SN S . L L SN T



\ v N-qv-q‘-QD-- ....-..\h\k.\‘.. Y
4 L, '
\\.-....\ \»-\ ...L.\-..:.‘.. .

Caal,

.I.u.‘.\\\\ot ....

Ny I W ‘
A A
-4\ hlh. S
\ ! ,, l
L.\FL. "

r.
t
ﬁ.
! uorldwnsuo) [ang UO JUTEBIISUO) SWIL 3O 129333 ([I°¢v FYNOIA
g (SNVIavY¥) IWIL YIANINVW TVLIOL
f v 21 01 8 9 v Z 0
a 0
T | | B 1] - T
41
o}
i
| = —3
e e e e e e e
<
A4 ~
4z
S g A N 2
= 7 t
E =
> z
< = HA
i N
a
¢ - —A ¥
ueiped (°l = OSWTIl UOTISeAY

RO A Y R NI oy e ey (I ....‘..... A LT T, T, 28, By Ay Y, AL Y YY . Py e ey




LalS SEb aEar ans 2ut a4

,-V( ....)n A

«Tas

-.-.- AN Y, Ty .
. ...\ X \.‘..q.u.... ..“M ;

ﬂ-nn- o fm ﬁ
)II‘}‘LU..\ F

-hhk.h

sut-e-Wol uorseAg 103 a[8uy esyndul TeriTUl ZI1°¢¥ TUNDIH

(SNVIavy) dWIL NoIsvad

106

utdTi0o WOlJ UOTSBAY

0z 218ue aut]

| B

06

001

01t

0z1

0¢1l

ovi

0s1

091

0L1

081

(s39¥99d) FTONV ISTNAWI TVILINI

y ... v .. q- G ﬁ .......A . -v S .......\ N ... g S R ,.A. \¢.- .ﬂlﬂ-—- A” o-I .—n-- \p. -’ti -.t -.— O N ... -t




SUTT WOJI] UOTSBAY 3and B J10J PIAITIYIY aduelsi( STy FANOIg

(SNYIQVY) IWIL NOISVAY

-

107

818Ue aurt]

utdtao
woxj uorseayg

0°1 = IpA-eataqg

DT SN - « 7y _»

—

-
-

INIT WOYd FONVISIA

WERALI E gl

VD2

o

g

e e
EN NS

I

RNy

BTSN



il

...A...A\JNJs ’
..Vﬁ)q‘-} ¥
. -‘ -ﬁ -)\s h. -

W T
»
-

a13uy osyndwuy TeriTul HT°¢ FINOIA

(SNV1avy) aWnIl NOISvAd

Rand l s el

= 00T

- 01T

- 0¢1

— 0¢1

108

311q10-03-Uinlal pue
QUTT WOJXJ UOTISEA

-4 ov1

ATuo aury -1 ost

Wwolj uotrseag

(SNVIQvy) 919NV ISTNdWI TVILINI

— 091

saa18ap 0°S = ardue aurq]




P

ot e | P
g K “uxamm

Y EYTYTwTy
O

)

¥

lkl

11qiQ-03-ulnlay pue
sur1 woxj uorseayg xo3j uortjdunsuo) Tong eST°v TANOIA

S

o

(SNVIQVY¥) AWIL NOISVAH

/et Sam Al dhen Sk 2ok Sl 4

(]
N
-
o

\’

AR AN

AN

e
!

<

|

Al R A dag e g
By Y
%

I

H>|NHHQQ

)

SR

109
33, _yi1aq / A-viTdd

Hm90h>|muaoo

1S9193UT JO 9sSBD 3yl SB SUWII Sues
2Y3l UT JUTIT 9Yl woaJ IJdURISIp Swes a3yl o3 5
A11ewr3ido aAow o3 paatnbax asyndur yeritul = 3 m>-muHoQ

1
o~
Ay

sa9183ap 0°S = ar8ue aulq]

A
e

AN S ‘)‘ Poeh .

LY

.- A RIS TR TR .. e e v 78 e e v e - e e (IR et et et el A




. - v, . 3 3 Al ’ 3 A S : - 4 p PR
) - .o . e *

Ry B NOL o ' - : , 7Tl
b\ e . [P A .

r"b ;"h‘.I'P LS S e Tl

11Qi0-03-UIN3dYy pue
su1lT worg uorseag 1oj uoridunsuo)d [ong qST°y FANOIA

.

L

(SNVIAQVy) dWIL NOISVAI

\"'

e TRt e

%)

(o)
()
=

o

A1uo N
UOTSEAY

Tr-e310q

110

|
(3]
A-V1T34d

[ N U R -..-.-.\-..--.\-\.

. .
L el e e,

S CXARARI . DRGEX




M AN AN et s

1M

-—
L -
=
. ol
-
E
=
Ll
— ] [4
~ =
[7p] (]
= o
< n
—t 3]
e >
g 0l o+
ol
~ =~ 0
O ~
n [43] “ O
N > !
(] - L O
e = g #
"] -t
) z = a
g =] o —
=t -~ 3
o [7p] O
L] < >o
wn - [N
m =3
L] [=Rae]
l - - [+ =1
) = «
. —
' (-]
. = Ne]
. « —
] 0 v
. =
' ot m
- - =
_ =]
- &~
-
L,
I
1 | | | o
0 O -t ~N [=]

(SNVIQWVY) TIWIL YIANINVW TVIOL

' . R I e R B I N TP S T L G S AT S A R e i S S e T S POt L L R ARG TR RARARS SR
PR N A R S N G N S A B T 2L LR PR R R R N P C S AT A N A K Xy Al




L., _ﬂ
qmyny»v_
DA

el Rt e i 2 /e Sk

"o ™

11QqIQ-03-UIN1dY pue SUTT Woxq
uotrseag osindu]-om] 10J sjusawaliinbsy yeng eLI*py dandij

it ke i andee ATl
-,

o2

. o gy
- e
CH% 'Y
-

(SNVIQvy) dFW1l NOISVAdL

197 3N 5

[ g]
o~
—-
o

-~

LY ‘ .y -' ‘-"..

112
NN

398, _y113a / A-v1Tdd
>

/ / / /

/ /v /! i

saaa8ap o7/ \\ / / / )
s” o¥ S1/ 0z/= a18ue aurg 4 X

PR

et
SN
)

e

L e e P . . GEEEE . s w_c ¢ 1 QNN . . Lt 4o N BRI STk T e PR R JH . SN N PRRR Al  JTIE N



YT

WTE W Y

T

(ol 't e et a0 S A A g N SN A S Bl A

PRl b T A

PR

Aa it e e S B g At s

Pl D i 4

v
BN

“
%

it

———

113

11q10-03-UlnNlady pue auTT Wouxqg
uotseag asindwr-om] J03F sjudwaitnbay r[ong

(SNvIavy) FWIL NOISVAZ

9Ty ANODIA

saaa8op_0 = o18ue aurl

A-V1T3d

<

-

NP

I\

.l

e

.= 4'%.' o (..fd’ d‘\-'

%y e N

-

Tl L

).



>

rr'-vvrrrrrrv.rf_rr‘—rv‘m_. 4 _ & ga-

114

l19Aanuel 9seyd
-11Q10-031-uiniay B J10J SIUIWALITNDIY T3Ng BTt TYNOIJ

(SNVIavy) dWIL NOISVAL

Z I 0

| T 0
&
-1 =
=
>
L}
<
~
M
- N | umd
3
>
s31qao Jurseyd ¢ L
UOT31EB1S-UO-UINY Y =
las}

- ¢

31qio 3urseyd I
UOT31B3S-UO-UINIIY
mn IR

soox8sp 0°S = o[3ue BUT]

RROR $'4

oL

SR N
L Y

-‘ ‘-



ML b S e il

Ol Y SN A AR S

115

AN ....,......:.:,
L 1

- ) Gty A St
-4....--.-.\ .h\h\.\‘\\h\_ y
e A DA A
IUEIR AT (O PN A
O | LA R i

154 .y
SN EES Sre Pl PN

13AN3uey aseyd

-311q10-031-UIN3la9y B X0J sjuswalinbsy y1ong qgr°y IWNOI

(SNVIAVY) dW1Ll NOISVAH
z 1

| L

1qL0-03-UIny oy

s3tqao Suiseyqd 7
UOTIBIS-UO-UIN] Y

311qI10 Burseyqd
UOT]B]S~-UO-UIN] DY

A-VL113d




L s UL 1 : eIt
. e SURIIE P SRS Pt
w
T
w 19ANSUBl 9SBUJ-3TQLQ-03-UINIay 10} SUWIL I9ASTUBN 6T1°v dUNDId
F (SNVIAVy) IWIL NOISVAL
l T 0
L _ 0
—
Qo
=
>
&
31qI10-03-UInlay —1° =
=
=
<
tm
=
—
-
=
—q ot ™
11qro 3urseyd 1 - )
UOT31B3S-UO-UINIDY — [ X
= .
> e
z ..»
“b\ _..\
X
— ST _-”s
s1t1qio Surseyd 7z vy
UOT3B3IS-UO-UIN]SY — 4
s99139p (°S = affue aurTq ....
= 0¢ b
s
“.-
e
X7
"
» ..... ...-‘. . .n.:. ,..f...........-..,_ .J..... g ...... B ot .~... -.-. ), ... ... ... ...... ..‘h :....-.-...




T,

L et

- -——

e a8

J9ANdURK UOTIEIS-UO-UINLOY
ssynduy-9aay], 103} sjuswaxrnbay [ong ®EZ'$ TUNOIAI

(SNVIQvVY) dWIL NOISvAd

117

11Q10-03-UINIRY_ _ mmm——=—""" "

- — T ————

‘\
\\
sitqio Suiseyd ¢ o \\\
UOTIBIS-UO-UINIDY . —— "
..Ico..l|.I||||||. - \\\\
i
311qi0 Surseyd T
UOT31831S-UO~-UINIDY
asindut ¢

—————=—psindut 7 - 93133p 06
saai8ap 0°5 = o13ue oulq

338, _y11aa / A-viT3q




AJ

AR AT A e g S AR A an A i dhent AR b e A ade She Al den S b ieate i e mar s

A e g 4

" e S 3

"i

118

»

JaANaUBK UOTIEBIS-UO-UINIDY
astnduw] -sa1y] 103 sijuawartnbay 1ong qQz°'v FYNOId

(SNYIQVYd) 9WIL NOISVAZL

RN
9,0,0 7 0

CR R
DAL

31q10 Sutseyd Hll\\ly,\.

UOTlel1S~-UC-UIN] Y

$311Q10 SUTSeHH—Z— — — _ _

Uo131e1S-UO-UINI Y llllll
.,ll/r T~
- )

/' ,/
R —3ra / ~

ssindur ¢ “\\
——=——3sindutr 7 - 23139p 06 /

saoua8ap g°S = ardue autq

A-V1Tdd




YV MYy ny -.f...-n-cts. L%
ROk BN
* ll.l‘ b-ll-. ‘l‘lt-. c.ui“'\ i\

a4 a4, 8 4 Ce e o Ta e

.‘....

-... 4 H
("I A et at et i
| MR A BN AT = ¥

NI

ek

W“’..
uotlelS-uo-ulnlay o

asinduy-931yl 10J SwWil XsAonuen 17y {INDII I

\.

(SNVIGVY) FWIL NOISVAL ;

by z 2

i
o
W)

-

p—

(=}
ot

-

311Qi10-03-Uu1n3ay

-— - -
'-ll'""lllll'-"‘
—— e S e e > e -

q

119

dWIL ¥FANINVA TVIOL
<

31qi0 3utrseyd 1 '
UOTIIBIS-UO-UININY Ay

S1 "
soo18op (°S = 913ue autrg N

Nl e at
1

.
> 3
.
.
r, ‘e
3 %
¥
3 ...
», .
» KK
" 5
. L
» A
v K
” ¢
N N
a -l
’ .d
% ’
.
-
.
v .
N D
! 0
.
’ .
’ L.
! <
. nl
f Ve
- d M Y 9,
i ;
[ -
: [ o = e, . . P . .- - Ve e . . B o« et
(AT Y ‘:n- e e, 4 5 8ty e e e Y P DR A RIAIRVEVERR. IR o, ... R o e ] o v LAY v e Se e T vy R



LARA And S &

reew

I Sartaii

ey

120

ANNANE Yot
| tx.f. WA _
WY W LA AN

19ANSUBK 11QaQ-031-UdNn3dY 10} uoridunsuo)
19N U0 3UTBIISUC) SWT] 1OANJUEBK JO 3995349 7zz'v FUNOIA

(SNVIQVY) dWIL ¥IANANVIN TVLOL

9 S 1% by 4 I 0
T T T T ; T !
pauteijsuodup
-4 7
=]
g
¢ - e
—
v
<
m ~
= N =
t &
oy =
- <
> 7
<t L <
z
= A
\
—————— asindut om] /
asyndutr saayl /
v saa18ap o' = a18ue autT] / = B w
SuetTped *T = OWTI UOTSEBAT _
g
\ |%o "
Y

2

s




-
-

314‘11.-{ . » . - - ) .
...n.é....\.«.?v : | 2. . A [y
} Far 2’ % vy - i ’ g
W]

A T s o |

3
g
¥ loAnauely 11qaQ-03-uiniay Jtoj arduy asyndu]
3 [BI3TU] UO jUTBIISUO) duL] I3ANAUel JO 1238IFd €z'p TUNOIA
y
m dWIL YIANINVIN TVLOL
y
m 9 S 12 ¢ 4 I 0
w ] | | | | 1 09
m.
] -4 0L
'
Z
—
40 =
s
—
_ < oot 3
5 s
2}
4ot ™
>
Z
2
—_—— e — astndut om], N R
asTndut 9sayl
1, — 051
2 s9oadap g°§ = 918ue aurtT
3 uetped (0°T = OSUWIJ UOTISEBAY
- ~ 0ST
5
.
',
.
1
A

O

RCCACTNN

‘&7
oLd7h

)

.

CACI s

-

)'y LY

LY

S > Py *
."-.-li

e

RN AL

O/

7
o

G A LR I IR
-‘.n"- > AL

T ey

e

o

-~
LIy
Ty @y

RO

-



“ 5 vL
f...c_ (A .
A A O PP

19AN3UER) UOTIBIS-UO-UINIIY 103
uotldunsuo) [anj UO JUTRIISUO) W] IdANduelK JO 323333 ¢z°'¢v J4IN9Id

(SNVIaVY) dWIL ¥IANINVN TVLOL

0¢ S¢ 0z S1 01 S 0
T 1 T I I | 1
Lr
— C
T N Z
¢ ——— |
asyndut In ¢ itaso wm
1 I 1Inog Surseyd 1 v .
o B 2 T <
[§V] = =
H =
¢ 2
3>
astndut saxyl d Adv <
&
[aa}
saaxfap 0°'Ss = a913ue aulT
v L 0°T = OSwWIl UOTISEAY

. \L




[
g
.
g
¢
f
3
{
d
w 13ANSUBKN UOTIBRIS-UO-UINISY JOF a[8uy asyindu]
% [BTITU] UO JUTBIISUO) SUIL IS9ANSUBW JO 13103333 SZ'v FYNOId
g
§ (SNVIAVY) IWIL YIANINYW TVLIOL
3 0t S¢ 0¢ ST 01 S 0
. r { ki 1 ] ] 08
r.. v
g ~4 06
3 \\\\\M
. T
X !
; “ 4 oot
£
... “
. “ 1°"
4
j - “ g 0z1
S m 1
g
N - 0¢T1
.
3 J ovt
g
. — 0ST
g saa18ap ('S = 918ue aurq
g 0°T = auwrl uotseag 091
i n
5
X 4 0L1
g
./
.,
'..
’
v#..
",
& : .
b
——— ____

dTONV ISTNdHWI TVILINI




. AR M
. PR P
- CHRETRPTET B DU I N

-

I A

94

BN T R T AT T e T Yt LT (T ettt 1é Tt e,
P o R e T S AL ISR

Pl N A i G A A S A Pl et el ead A i

124

5. CONCLUDING REMARKS ’ _—

R
In conclusion, some suggestions for further work are offered. C;&j?
‘i"‘:h(:-
The maneuver-sequence-optimization computer programs can be WHCh

improved by a general restructuring and streamlining and the addition

of various features. It is believed that with further development and

systematic testing the programs have potential for real-time .iuii
generation of optimal maneuver sequences in an operational setting. L
Robustness can be improved by tailoring various details of the -
nonlinear-programming package to the particular class of problems of
interest. Greater user convenience can be provided by systematic
generation of first-guess maneuver sequences for general combinations
of constraints. Alterations in candidate sequences can also be
mechanized gracefully to cope with the bothersome situations in which
one or more impulses fade out to zero in the course of iterations
and/or impulses coalesce into one. Auxiliary primer-vector calcula-
tions can also be added as a step towards validation of results and
generation of alternative-candidate sequences.

It would be of interest to carry out detailed comparisons of

observed Soviet ASAT maneuver sequences with optimized sequences in-

corporating various assumed combinations of operational constraints

along the lines of the present exploration. To this end an improved

launch-burn representation might be incorporated. Attention should

be given to possible sensor constraints on approach to'the target.
Further evasion-and-return studies should be mainly applications-

oriented. Two one-parameter families of maneuver sequences (one up,

e e e e it ycaaeas mem e pp s . e ron e »
T G S 2t ? . R ) (
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one down) could be pre-ca]cu]ated and stored as a function of warning
time for operational in use in real time and, in some applications
(e.g., shuttle), on-board. Interactive alternating pursuit/evasion
maneuver sequences are of interest for future scenarios featuring

reduced tracking and communications delays.
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APPENDIX A :::_:':_
oy
THE OPTIMIZATION ALGORITHM al

This chapter discusses an approach to numerical solution of

minimum problems with nonlinear constraints which is motivated by the ij*;:
y desire both (1) to avoid the evaluation of second partial derivatives feen s

necessary in second-variation procedures and (2) to improve upon the

terminal-convergence behavior of first-order (gradient) methods. The
| basis of the approach is the variable-metric gradient method for find-

ing an unconstrained minimum, This method employs a metric which is

adjusted during the iteration cycles. As the metric approaches its

limit, convergence to the minimum becomes quadratic. The Davidson-

Mrand dIREIEININCINL I
“. ‘. T
KA JC
LU .
L R R R

Fletcher-Powell (DFP) variable-metric algorithm and the Broyden-

r Ty e v
el T

Fletcher-Goldfarb-Shanno (BFGS) algorithm are both incorporated in
the program. b2
In one of the two approaches to the handling of constraints, the .

performance function is augmented by penalty terms which furnish a

square-law measure of the constraint violations. The augmented func- . ?!!!t
tion is minimized, yielding an approximation to the minimum of the Eg&g&
original problem, with small violations of the constraints [10,11]. ' ﬁ§£§§.
i The second approach employs gradient projection. The history of the .:‘;
I projection version of variable-metric optimization is somewhat §§%2§,
E checkered. Immediately successful with linear constraints, the seem- ' ii.sj?
i ingly obvious extension to the non-linear case encountered difficulty _Iiig
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in that one-dimensional searches may fail to terminate. The use of a 553;51
performance index augmented by a correction linear in the constraint c?ﬁ§§
functions, however, in conjunction with a metric-update based upon Eﬁii;ﬁ'
changes in the projected gradient vector, proved successful [4]. RN
Subsequently, refinements in the projection algorithm have made it more %ff?CY
than a match for the penalty version [5,12]. ;iﬁ
. In the interest of making the present account somewhat self- Tfi
k

contained, the three topics of unconstrained minimization via variable- AR
metric gradient method, penalty-function approximation, and projection

will be taken up each in turn. Much of the material is extracted from

previous work [4,5,12,13].

Unconstrained Minimization via Variable-Metric Processes

The DFP variable-metric method for numerically determining the

minimum of a function of several variables combines the best features jj: )
of the conventional gradient method and Newton's method; namely the i: ]
sureness of convergence of the former and the quadratic terminal con- .:!!:T
vergence of the latter. An excellent exposition of the method, in- isgzis
cluding convergence proofs, -is given by Fletcher and Powell [14]. ;E;Zi;
' Denote the function to be minimized as f(x). It is assumed that .
f is smooth to the extent of possessing continuous second partial .% :

derivatives. Any starting point may be chosen (although the best a

priori guess of the minimizing x is the obvious choice to keep the

ARy
Al

v
e

number of iterations smallest). At the starting point the gradient

P
L4

%
DY

»

vector, fx' as well as f itself, is evaluated. A change is then made

AR ",“&'S"

in x according to

R e e e T e e ST S e e S e e, A 5 Lo SART WA NN NG 0

DY LAY 2 L SN |
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AXx = =o H fx . (A.1)

H is a posiﬁive-definite, symmetric matrix, defining the metric in
the x-hyperspace.* Its initial selection is otherwise arbitrary.
a > 0 is a scalar step-size parameter.

In the DFP method, the one-dimensional minimum of f vs o is ob-
tained. This requires an accurate and sure-footed numerical search
algorithm [e.g. 15]. At the new x, the gradient vector fx is again

evaluated. The H matrix is updated according to

T
T Haf_ Af ' H
H+oaH=H+ AXTAX - 2. (A.2)
ax af Af  H af
X X X

The procedure is begun again with the new values of x, f_, H.

x?
It is shown in [14] that H remains positive-definite and that, as
x approaches the minimizing point, H approaches f;l evaluated at the
minimum. For quadratic f the minimum is obtained in, at most, n
steps (within round-off error); the method is quadratically convergent.
For more general functions having the smoothness properties assumed, a
Taylor expansion through quadratic terms provides a good representation
of the function in some neighborhood of the minimum. With H converged,
the minimum of f vs o then will occur for « = 1. The ax of eq. (A.1)
will approach the value given by Newton's method, namely -f;l fx .

A more general variable-metric formula is given by

.
T Hof afH
Moo= be XA XK, 0T (A.3)

T
AfoX Afx HAfx

*The inner product is gjven in matrix terms by <X,Y> = XTHY, and, as
usual, || X || = <X,X>7%.

e Al i a Ak and ed Aul Al SR 2 A A v

<,
X

-~

.

-. S
-

.

- _'
t .
v .
!

[

e

on
>
.
et et e?

i

GO

A

. 4

,,,
Aorlr

b B 4 v
v T P
Ly BT
AL B A
% % v id

B "
Ko
N

"o

s 8

v ',



H af
v = (AfI Hoof )i —22 x“] , (A.4)

*laxT af ) of ) H Afo
which first appeared in [16]. The update is the same as DFP when the
scalar ¢ taken as ¢ = 0. For ¢ = 1, it is the same as BFGS (Broyden-
Fletcher-Goldfarb-Shanno), the designation denoting simultaneous dis-
covery by the four investigators named.

It developed that all of the algorithms in the one-parameter
family generate the same sequence of steps when "exact" one-dimensional
searching is employed and that H + aAH is positive definite whenever H
is, provided only that the scalar ¢ > 0. H tends monotonically toward
the inverse Hessian in a certain sense, for 0 < ¢ < 1. Fletcher's
effort at employing the generalized algorithm without one-dimensional
searches, and with an attempt to optimize the ¢-choice, produced
mediocre results [16]. These facts have tended to draw attention away
from improved variable metrics. Computational experience, however, has

shown that BFGS in combination with "exact" searches is significantly

more economical of function samples, essentially because the first
step taken is a better guess than with DFP [17]. The tendency is for

DFP to overestimate the step, the reasons being poorly understood.

Penalty-Function Approximation

The problem is to determine the values of the variables x which

minimize f(x) while satisfying constraints g(x) = 0, where x is an
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n-vector,* f is a known scalar function of x, and g is an m-vector,
m < n, of known functions of x.
- An approximation technique for treating constraints is due to

Courant [10], and consists of forming the function**

e, 1 7 2 —
f = f+§ Z k.g. (A.5)

and, for "large" kj > 0, seeking its unconstrained minimum. Should

solutions of both the approximation problem and the original exist,

the former approaches the latter as each kj > o, £i§=~

The choice of numerical values for the penalty coefficient kj is
subject to requirements which tend to conflict. If very large values
are chosen to diminish the constraint violations at the minimum, the

numerical errors in the products kJ.gJ.2

and their partial derivatives
become significant. These errors, occurring in each step of a succes-

. sive improvement procedure, have an adverse effect on convergence.

‘ Because of this effect, one may accept appreciable constraint viola-

tions in minimizing f in penalty approximation.

- For notational simplicity, it is sometimes advantageous to re-

write f as

?=f+]§gT Kg (A.6) .

where K is an m x m diagonal matrix with the kj values along the

diagonal, and ( )T js the transpose of ( ). For treatment of

*A11 vectors are column vectors.

h

* ( )j is the j*™M component of ( ).
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inequality constraints, gj > 0, each term in the sum (A.6) correspond-
{ ing to an inequality is multiplied by h(gj), the Heaviside unit step

function with argument gj.

Variable-Metric Projection

The Kelley-Speyer algorithm minimizes a scalar-valued function

R f(x) (x an n-vector) subject to m equality and p inequality constraints.
g'-o L j=]9 9m (A.7)
J
and
95 2 0 , J o= mH,..mp (A.8)

The process employs the formulae

sx = -a H(f, + g2) (A.9)
and,

I ¢ 1T
A= - (gx H gx) 9, Hf (A.10)

where a one-dimensional search is carried out to minimize the function
f + gir, along the search direction, ax. The dimension of g and X in
eqs. (A.9) and (A.10) is determined by choice of the active-constraint
set, to be reviewed subsequently. The one-dimensional search is

- terminated short of a minimum if the violations gj build up beyond
prescribed tolerances.

Optimization cycles employ an H-matrix [4] updated according to

T
T H(Afx + Agxx)(Afx + Agxx) H

. H+ aH = H + —0X 8X (A.11)

T - T
AX (Afx + Agxx) (Afx + Agxx) H (Afx + Agxl)
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in the case of DFP. An analogous formula employing changes in the
projected gradient fx g2 is used for BFGS updating. The update is

performed only if
exT(af  + 8g.2) > 0 (A.12)

which assures positive definiteness of the updated H., The screening
feature represents a departure from the original [4] version of the
algorithm, this seemingly slight modification having been found to ef-
fect a considerable convergence improvement [5]. The update formula
(A.11), for a given cycle, is the DFP update for minimization of

f + g [4]; it guarantees definiteness of the updated H if the one-
dimensional search terminates on a minimum. The test (A.12) offers a
guarantee of definiteness without this restriction. Failure to
satisfy (A.12) is associated with nonconvexity of f + gx as a function
of «. When failure occurs, the update is merely skipped; it is not
necessary to restart H from a diagonal first guess.

Projection optimization processes require that constraints be
restored between optimization cycles, ordinarily via one or more cor-
rection cycles, which may be of various types. In the H-update
formula (A.11), the change in the x-vector, ax, and the change in the
projected gradient vector, (Afx + Ang), are between the beginning and

end of the optimization cycle only.

Implementation of the Variable-Metric Algorithms

The material of this and the next section is mainly from [5,12]

and is included to make the present report relatively self-contained.
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Constraint Restoration
The initial nulling out of constraint functions often proves more
challenging than subsequent restorations in that the constraint viola-
tions to be dealt with are ordinarily larger in magnitude. For
clarity, consider first the case of minimizing a scalar-valued function
f(x) (x an n-vector) subject to m equalities of the form (A.7). In
- this case, the initial constraint nulling is done by minimization of

a function ?:

T 2, % Zh(F-f

Z kj o5 + = (fy = )T h (F - £p) (R.13)
This is a weighted sum of squares of the constraint functions plus a
term to counter gross increases in f. The term corresponds to

penalty-function treatment of an inequality fo - f > 0. Here, again,

h is the Heaviside unit step function. The kj are determined from

——-|T j=1,2,....m (A.14)

where k is jnput. This choice would make equal the contribution of

each equality constraint to the second directional derivative of eq.

(A.13) in its own gradient direction at gj = 0, if the constraints
were linear. The constraint f, - f > 0 is included quadratic-
penaltywise in eq. (A.13) only during the first restoration sequence,
with a coefficient k, taken as 1/10 the smallest of the kj calculated
from eq. (A.14). The constant foy 1s estimated as the initial value
of f + g\,
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The metric employed in correction sequences may be denoted A (to
distinguish it from H of the optimization cycles). It is adjusted

approximately for changes in the kj, one at a time, using

k.
A+ A=A - L - Ag T
1 + ak; g, g.
i %, "y

A (A.15)

This correction, from [13], is based on the idea that A approximates
a=1
fxx
as A + AA from eq. (A.15), using A = I and Akj = kj -1 [kj from eq.

. The metric to start the first correction sequence is obtained

(A.14)]. If n or more updates are completed in this sequence, the
emerging DFP metric is carried over to the next; if not, the initial
metric is carried over. In either case, adjustments for any changes
in the kj are performed via eq. (A.15) before use. Negative incre-
ments Akj are limited in magnitude to insure that the denominator of
the fraction in brackets does not nearly vanish,

The second and subsequent restoration sequences employ

ax = -a A gI (gI A gx)“ q (A.16)

together with a one-dimensional search versus o for a minimum of ?
given by eq. (A.13), but with the last term deleted. This correction
scheme, with o = 1 and without a search, was originally proposed by
Rosen [ 5J; it effects restoration in a single step for linear g. The
existence of the inverse in eq. (A.16) requires that the matrix 9,
have rank m, This condition is met at the constrained minimum in the

classical "normal” case in which the tangent-plane approximations to
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the constraints are well defined and distinct. Note that there is no

guarantee that eq. (A.16) provides a direction of descent for %, with

general kj values; thus the one-dimensional search may fail and -
» 3 * . . - .. \. ‘.-.
reversion to steepest-descent minimization of f become necessary. st

The magnitude of constraint violation upon which optimization

cycles are terminated short of a one-dimensional minimum is Cj §j,
where §j is a preconceived tolerance and cj, usually >> 1, is a factor
adjusted with the aim of just permitting restoration with a single
cycle of eq. (A.16), to within the tolerance. Since the use of a
single c-factor for all constraints met with only limited success, a

c-vector is used. The components are adjusted adaptively, if somewhat

heuristically, in the following way: cj js increased 10% if a single

restoration proves successful; it is halved if two restoration cycles el
are required; and it is cut to one-quarter if there are additional ;{;ﬁi
cycles. ?&i;g
N

Treatment of Inequalities ‘;:;:
It is of interest to determine a minimum subject to a mix of i;iég
equality and inequality constraints, the latter expressed by eq. (A.8). tgﬂ;ﬁ

During the initial correction sequence, inequalities are handled

penalty-function fashion, the function f* to be minimized given by
m+p k
1 2 0 2
+ fj%ﬂ ki 95 h(-g;) + =5 (fy - £ h(f - £0) (A7)

with the kj determined as though all constraints were equalities:
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" ,Z] lgi |
i= X .
5 = ) L , 5= 1,2, (A.18)
JX

The determination of the active constraint set for optimization
and restoration cycles proceeds first by excluding those satisfied
with a margin gj 3-§j’ where §j > 0 is a preset threshold. Those
candidate inequality constraints for which gj < §j are then screened
further via the Kuhn-Tucker conditions Aj < 0 [18,19], using eq.
(A.10) first with all the candidates included, then successively with
Kuhn-Tucker violators dropped, as many times as necessary, until ali
A < 0 or all candidates are screened. Inactive constraints are
treated in penalty-function approximation,

In the event that there is more than one Kuhn-Tucker violator on
a given cycle, dual violators are screened out first, one at a time.
(A dual violator is a constraint whose multiplier violates xj < 0 both
with all other constraint candidates considered and with other in-
equalities dropped.) This procedure has a sound theoretical basis in
the case of two inequality constraints and, in a more general setting,
represents an improvement over dropping dual violators in an arbitrary
order. The Kuhn-Tucker conditions employed apply to the problem of
minimizing a Tinear approximation to the function f subject to
linearized constraints and to a quadratic constraint on step size [5].
They become identical to the Kuhn-Tucker conditions for the original

problem when evaluated at the constrained minimum sought. The Kuhn-

Tucker screening has generally been found to be worth the computational
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expense in reducing tendencies of constraints to switch between active
and inactive status from cycle to cycle. The effort has proceeded on
the assumption that vector-matrix operations are cheap computationally
in relation to the cost of gradient and function samples; this is
realistic for trajectory-optimization appliications. A more
sophisticated and somewhat more intricate procedure for Kuhn-Tucker

- screening has recently been developed [6] and is incorporated in the

computer program as an option.
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